ubiquinone has been researched along with Weight-Gain* in 5 studies
5 other study(ies) available for ubiquinone and Weight-Gain
Article | Year |
---|---|
A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.
The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention. Topics: Adipose Tissue; Animals; Diet, High-Fat; Fatty Acids; Glucose Intolerance; Lipid Metabolism; Lipids; Liver; Male; Metabolic Syndrome; Mitochondria; Muscle, Skeletal; Obesity; Organ Size; Phospholipids; Rats; Rats, Sprague-Dawley; Triglycerides; Ubiquinone; Weight Gain | 2016 |
A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice.
We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. Topics: Animals; Diet, High-Fat; Dietary Fats; Liver Diseases; Male; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Organophosphorus Compounds; Ubiquinone; Weight Gain | 2014 |
Coadministration of coenzyme Q prevents rosiglitazone-induced adipogenesis in ob/ob mice.
The aim of this study is to determine the effect of coenzyme Q (Q) on ob/ob mice treated or not with thiazolidinedione (TZD).. Ob/ob mice were treated with Q, Rosiglitazone or a combination of both molecules for 13 days; physical and metabolic parameters as well as oral glucose tolerance test were assessed. mRNA expression of genes of energy dissipation and storage were measured by real-time PCR.. Q treatment improved some metabolic parameters in ob/ob mice. Surprisingly, cotreatment with Rosiglitazone and Q improved metabolic parameters and prevented TZD increase in body weight and adiposity, mainly by increasing lipid oxidation in adipose tissue, reducing lipid synthesis and balancing adipokine gene expression.. Our finding suggests that Rosiglitazone and coenzyme Q bitherapy could prevent the body weight gain associated with adipogenesis and could improve the clinical use of these compounds. Topics: Adipogenesis; Animals; Drug Therapy, Combination; Energy Metabolism; Glucose Tolerance Test; Hypoglycemic Agents; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Reverse Transcriptase Polymerase Chain Reaction; Rosiglitazone; Thiazolidinediones; Ubiquinone; Weight Gain | 2009 |
Reduction of ascites mortality in broilers by coenzyme Q10.
Effects of coenzyme Q10 (CoQ10) supplementation on growth performance and ascites were studied in broilers. One hundred eighty 1-d-old Arbor Acre male broiler chicks were randomly allocated into 3 groups with 6 replicates each. From d 8, the diets were supplemented with CoQ10 at levels of 0, 20, and 40 mg/kg, respectively. From d 15 to 21, all the chicks were exposed to low ambient temperature (15 to 18 degrees C) to induce ascites. Average feed intake, BW gain, and feed conversion ratio of the broilers during 0 to 3 wk, 3 to 6 wk, and 0 to 6 wk were measured. The results showed that there were no influences observed on broilers' growth performance, but the mortality due to ascites was reduced by CoQ10 supplementation (P < or = 0.05). Erythrocyte osmotic fragility (EOF) was significantly decreased by 40 mg/kg CoQ10 compared with the control, but no significant changes were observed on blood packed cell volume (PCV) among the treatments. Pulmonary arterial diastolic pressure was significantly decreased on d 36, but no significant changes were observed on right ventricular pressure (RVP), pulmonary arterial systolic pressure, and the maximum change ratio of right intraventricular pressure (+/- dp/ dtmax). Ascites heart index (AHI) was significantly decreased by 40 mg/kg CoQ10 supplementation (P < or = 0.05). The results of this study suggested that CoQ10 has a beneficial effect in reducing ascites mortality in broilers, and 40 mg/kg CoQ10 seems to be more effective than 20 mg/ kg CoQ10. Topics: Animal Feed; Animals; Antioxidants; Ascites; Blood Pressure; Body Weight; Chickens; Coenzymes; Dietary Supplements; Eating; Erythrocytes; Hematocrit; Male; Osmotic Fragility; Poultry Diseases; Pulmonary Artery; Survival Rate; Temperature; Ubiquinone; Ventricular Function; Weight Gain | 2004 |
Effects of dietary L-carnitine and coenzyme Q10 supplementation on performance and ascites mortality of broilers.
The study was conducted to determine the effects of dietary L-carnitine and coenzyme Q10 (CoQ10) supplementation on growth performance and ascites mortality of broilers. A 3 x 3 factorial arrangement was employed with three levels (0, 75 and 150 mg/kg) of L-carnitine and three levels of CoQ10 (0, 20 and 40 mg/kg) supplementation during the experiment. Five hundred and forty one-day-old Arbor Acre male broiler chicks were randomly allocated into nine groups with six replicates each. All birds were fed with the basal diets from day 1 to 7 and changed to the experimental diets from day 8. During day 15 to 21 all the birds were exposed to low ambient temperature (15-18 degrees C) to induce ascites. The results showed that under this condition, growth performance of broilers were not significantly affected by CoQ10 or L-carnitine + CoQ10 supplementation during week 0-3 and 0-6, but body weight gain (BWG) of broilers was significantly reduced by 150 mg/ kg L-carnitine during week 0-6. Packed cell volume (PCV) of broilers was significantly decreased by L-carnitine and L-carnitine + CoQ10 supplementation (P < 0.05). Erythrocyte osmotic fragility (EOF), ascites heart index (AHI) and ascites mortality of broilers were significantly decreased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation. Though no significant changes were observed in total antioxidative capability (T-AOC), total superoxide dismutase (T-SOD) was increased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation (P < 0.05). Malonaldehyde (MDA) content was significantly decreased by CoQ10 and L-carnitine + CoQ10 supplementation. The results indicate that dietary L-carnitine and CoQ10 supplementation reduce ascites mortality of broilers; the reason may be partially associated with their antioxidative effects. Topics: Animal Feed; Animals; Antioxidants; Ascites; Carnitine; Chickens; Coenzymes; Dietary Supplements; Dose-Response Relationship, Drug; Hematocrit; Lipid Peroxidation; Male; Osmotic Fragility; Poultry Diseases; Random Allocation; Survival Rate; Ubiquinone; Weight Gain | 2004 |