ubiquinone has been researched along with Status-Epilepticus* in 2 studies
2 other study(ies) available for ubiquinone and Status-Epilepticus
Article | Year |
---|---|
Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat.
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and the most resistant type to treatment. Novel treatment approaches are strongly required to prevent or even reverse the cellular and molecular mechanisms of epileptogenesis. In this study, we investigated the possible neuroprotective effect of coenzyme Q10 (CoQ10) in an intrahippocampal kainate model of TLE in rat. Kainate injection caused a higher seizure severity during status epilepticus and spontaneous seizure phases, and CoQ10 pretreatment significantly attenuated its severity and incidence rate. Intrahippocampal kainate also led to elevation of malondialdehyde (MDA) and nitrite, and CoQ10 significantly attenuated the increased MDA and nitrite content. In addition, intrahippocampal kainate induced a significant degeneration of neurons in CA1, CA3, and hilar regions of the hippocampus, and CoQ10 significantly attenuated these changes in CA1 and CA3 regions. Timm's staining data showed a robust mossy fiber sprouting (MFS) in dentate gyrus of kainate-lesioned rats and CoQ10 significantly lowered MFS intensity. These data suggest that CoQ10 pretreatment could attenuate spontaneous recurrent seizures and inhibit hippocampal neuronal loss and aberrant MFS in kainate-induced model of TLE in rat, and part of its beneficial effect is due to its potential to mitigate oxidative stress. Topics: Animals; Cell Death; Disease Models, Animal; Epilepsy, Temporal Lobe; Kainic Acid; Malondialdehyde; Mossy Fibers, Hippocampal; Neuroprotective Agents; Nitrites; Oxidative Stress; Rats; Status Epilepticus; Ubiquinone; Vitamins | 2013 |
Coenzyme Q10 enhances the anticonvulsant effect of phenytoin in pilocarpine-induced seizures in rats and ameliorates phenytoin-induced cognitive impairment and oxidative stress.
Conventional antiepileptic drugs fail to adequately control seizures and predispose to cognitive impairment and oxidative stress with chronic usage in a significant proportion of patients with epilepsy. Coenzyme Q10 (CoQ10), an antioxidant compound, exhibits a wide range of therapeutic effects that are attributed to its potent antioxidant capacity. To evaluate the neuroprotective effects of CoQ10 in rats against the observed oxidative stress during seizures induced by pilocarpine, and to study its interactions with the conventional antiepileptic drug phenytoin, two experiments were performed. Experiment 1 was conducted to test the effect of phenytoin, CoQ10, or both on seizure severity and oxidative markers in the pilocarpine model of epilepsy. Experiment 2 was conducted to test the effect of 2 weeks of chronic treatment with phenytoin, CoQ10, or both on oxidative markers and behavioral tests in rats. Overall, CoQ10 reduced the severity of pilocarpine-induced seizures and the severity of oxidative stress. Moreover, it potentiated the antiepileptic effects afforded by phenytoin treatment, with the potential safety and efficacy in ameliorating oxidative stress and cognitive impairment caused by chronic phenytoin therapy. Our findings strongly suggest that CoQ10 can be considered a safe and effective adjuvant to phenytoin therapy in epilepsy both to ameliorate seizure severity and to protect against seizure-induced oxidative damage by reducing the cognitive impairment and oxidative stress associated with chronic use of phenytoin. Topics: Analysis of Variance; Animals; Anticonvulsants; Avoidance Learning; Catalase; Cognition Disorders; Disease Models, Animal; Drug Synergism; Glutathione; Lipid Peroxidation; Male; Malondialdehyde; Oxidative Stress; Phenytoin; Pilocarpine; Psychomotor Performance; Rats; Rats, Wistar; Reaction Time; Severity of Illness Index; Status Epilepticus; Superoxide Dismutase; Ubiquinone | 2011 |