ubiquinone and Hypertension

ubiquinone has been researched along with Hypertension* in 83 studies

Reviews

25 review(s) available for ubiquinone and Hypertension

ArticleYear
Coenzyme Q10 as Adjunctive Therapy for Cardiovascular Disease and Hypertension: A Systematic Review.
    The Journal of nutrition, 2022, 07-06, Volume: 152, Issue:7

    Mitochondrial ATP production requires a small electron carrier, coenzyme Q10 (CoQ10), which has been used as adjunctive therapy in patients with cardiovascular disease (CVD) and hypertension (HTN) because of its bioenergetics and antioxidant properties. Randomized controlled trials (RCTs) beyond the last 2 decades evaluating CoQ10 added to conventional therapy resulted in mixed results and were underpowered to address major clinical endpoints.. The objective of this systematic review was to examine the impact of CoQ10 supplementation on older adults with CVD or HTN in the last 2 decades (2000-2020).. PubMed/Medline, Cochrane Database, CINAHL, and Google Scholar databases were searched systematically, and references from selected studies were manually reviewed, to identify RCTs or crossover studies evaluating the efficacy of CoQ10 supplementation. Data extracted from selected studies included trial design and duration, treatment, dose, participant characteristics, study variables, and important findings.. A total of 14 studies (1067 participants) met the inclusion criteria. The effect of CoQ10 supplementation was examined among predominantly older adult males with heart failure (HF) (n = 6), HTN (n = 4), and ischemic heart disease (n = 3), and preoperatively in patients scheduled for cardiac surgery (n = 1). CoQ10 supplementation in patients with HF improved functional capacity, increased serum CoQ10 concentrations, and led to fewer major adverse cardiovascular events. CoQ10 had positive quantifiable effects on inflammatory markers in patients with ischemic heart disease. Myocardial hemodynamics improved in patients who received CoQ10 supplementation before cardiac surgery. Effects on HTN were inconclusive.. In predominantly older adult males with CVD or HTN, CoQ10 supplementation added to conventional therapy is safe and offers benefits clinically and at the cellular level. However, results of the trials need to be viewed with caution, and further studies are indicated before widespread usage of CoQ10 is recommended in all older adults.

    Topics: Aged; Antioxidants; Cardiovascular Diseases; Heart Failure; Humans; Hypertension; Male; Myocardial Ischemia; Ubiquinone

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy.

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea

2022
The Effects of Coenzyme Q10 Supplementation on Blood Pressures Among Patients with Metabolic Diseases: A Systematic Review and Meta-analysis of Randomized Controlled Trials.
    High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 2018, Volume: 25, Issue:1

    Although several trials have assessed the effect of coenzyme Q10 (CoQ10) supplementation on blood pressures among patients with metabolic diseases, findings are controversial.. This review of randomized controlled trials (RCTs) was performed to summarize the evidence on the effects of CoQ10 supplementation on blood pressures among patients with metabolic diseases.. Randomized-controlled trials (RCTs) published in PubMed, EMBASE, Web of Science and Cochrane Library databases up to 10 August 2017 were searched. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Heterogeneity was measured with a Q-test and with I. A total of seventeen randomized controlled trials (684 participants) were included. Results showed that CoQ10 supplementation significantly decreased systolic blood pressure (SBP) (SMD - 0.30; 95% CI - 0.52, - 0.08). However, CoQ10 supplementation decreased diastolic blood pressure (DBP), but this was not statistically significant (SMD - 0.08; 95% CI - 0.46, 0.29).. CoQ10 supplementation may result in reduction in SBP levels, but did not affect DBP levels among patients with metabolic diseases. Additional prospective studies regarding the effect of CoQ10 supplementation on blood pressure in patients with metabolic diseases are necessary.

    Topics: Adult; Aged; Blood Pressure; Dietary Supplements; Evidence-Based Medicine; Female; Humans; Hypertension; Male; Metabolic Diseases; Middle Aged; Odds Ratio; Randomized Controlled Trials as Topic; Risk Factors; Treatment Outcome; Ubiquinone

2018
Recent Developments in the Role of Coenzyme Q10 for Coronary Heart Disease: a Systematic Review.
    Current atherosclerosis reports, 2018, 05-16, Volume: 20, Issue:6

    This review examines recent randomized clinical trials evaluating the role of coenzyme Q10 (CoQ10) in the management of coronary heart disease.. CoQ10 is one of the most commonly used dietary supplements in the USA. Due to its antioxidant and anti-inflammatory effects, CoQ10 has been studied extensively for possible use in managing coronary heart disease. One of the most common applications of CoQ10 is to mitigate statin-associated muscle symptoms (SAMS) based on the theory that SAMS are caused by statin depletion of CoQ10 in the muscle. Although previous studies of CoQ10 for SAMS have produced mixed results, CoQ10 appears to be safe. Because CoQ10 is a cofactor in the generation of adenosine triphosphate, supplementation has also recently been studied in patients with heart failure, which is inherently an energy deprived state. The Q-SYMBIO trial found that CoQ10 supplementation in patients with heart failure not only improved functional capacity, but also significantly reduced cardiovascular events and mortality. Despite these positive findings, a larger prospective trial is warranted to support routine use of CoQ10. Less impressive are the effects of CoQ10 on specific cardiovascular risk factors such as blood pressure, dyslipidemia, and glycemic control. Current evidence does not support routine use of CoQ10 in patients with coronary heart disease. Additional studies are warranted to fully determine the benefit of CoQ10 in patients with heart failure before including it in guideline-directed medical therapy.

    Topics: Antioxidants; Blood Glucose; Cardiovascular Diseases; Chronic Disease; Coronary Disease; Diabetes Mellitus; Dietary Supplements; Dyslipidemias; Heart Failure; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Muscular Diseases; Randomized Controlled Trials as Topic; Risk Factors; Ubiquinone

2018
Coenzyme Q-10 in Human Health: Supporting Evidence?
    Southern medical journal, 2016, Volume: 109, Issue:1

    Coenzyme Q-10 (CoQ10) is a widely used alternative medication or dietary supplement and one of its roles is as an antioxidant. It naturally functions as a coenzyme and component of oxidative phosphorylation in mitochondria. Decreased levels have been demonstrated in diseased myocardium and in Parkinson disease. Farnesyl pyrophosphate is a critical intermediate for CoQ10 synthesis and blockage of this step may be important in statin myopathy. Deficiency of CoQ10 also has been associated with encephalomyopathy, severe infantile multisystemic disease, cerebellar ataxia, nephrotic syndrome, and isolated myopathy. Although supplementation with CoQ10 has been reported to be beneficial in treating hypertension, congestive heart failure, statin myopathy, and problems associated with chemotherapy for cancer treatement, this use of CoQ10 as a supplement has not been confirmed in randomized controlled clinical trials. Nevertheless, it appears to be a safe supplementary medication where usage in selected clinical situations may not be inappropriate. This review is an attempt to actualize the available information on CoQ10 and define its potential benefit and appropriate usage.

    Topics: Animals; Cardiovascular Diseases; Heart Failure; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Muscular Diseases; Neoplasms; Ubiquinone

2016
Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension.
    The Cochrane database of systematic reviews, 2016, Mar-03, Volume: 3

    Blood pressure is a commonly measured risk factor for non-fatal and fatal cardiovascular adverse events such as heart attacks and strokes. Clinical trials have suggested that coenzyme Q10, a non-prescription nutritional supplement, can effectively lower blood pressure (BP). When this review was completed and published in October 2009, it concluded that "due to the possible unreliability of the 3 included studies, it is uncertain whether or not coenzyme Q10 reduces blood pressure in the long-term management of primary hypertension.". To determine the blood pressure lowering effect of coenzyme Q10 in primary hypertension.. We searched the Hypertension Group Specialised Register (1946 to November 2015), The Cochrane Central Register of Controlled Trials (The Cochrane Library 2015, Issue 10), MEDLINE (1946 to November 2015), MEDLINE In-Process (accessed 10 November 2015), EMBASE (1974 to November 2015), Web of Science (1899 to November 2015), CINAHL (1970 to November 2015), and ClinicalTrials.gov (accessed 10 November 2015). We also searched reference lists of articles for relevant clinical trials in any language.. Double blind, randomized, placebo-controlled parallel or cross-over trials evaluating the blood pressure (BP) lowering efficacy of coenzyme Q10 for a duration of at least three weeks, in patients with primary hypertension.. The primary author determined trial inclusion, extracted the data and assessed the risk of bias. The second author independently verified trial inclusion and data extraction.. In this update of the review, one new randomized, controlled cross-over trial with a total of 30 participants was added, and one trial included in the initial review was excluded. Only two of the three included trials were pooled in the meta-analysis, as one trial was judged to have an unacceptably high risk of bias. In the meta-analysis of two RCTs (50 participants), coenzyme Q10 did not significantly change systolic BP: -3.68 mm Hg (95% confidence interval (CI) -8.86 to 1.49), or diastolic BP: -2.03 mm Hg (95% CI -4.86 to 0.81] ), based on clinic data.. This review provides moderate-quality evidence that coenzyme Q10 does not have a clinically significant effect on blood pressure. In one of three trials reporting adverse effects, coenzyme Q10 was well tolerated. Due to the small number of individuals and studies available for analysis, more well-conducted trials are needed.

    Topics: Antihypertensive Agents; Bias; Blood Pressure; Diastole; Humans; Hypertension; Randomized Controlled Trials as Topic; Systole; Ubiquinone

2016
Nutraceuticals and Blood Pressure Control: Results from Clinical Trials and Meta-Analyses.
    High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 2015, Volume: 22, Issue:3

    Beyond the well-known effects on blood pressure (BP) of the dietary approaches to stop hypertension (DASH) and the Mediterranean diets, a large number of studies has investigated the possible BP lowering effect of different dietary supplements and nutraceuticals, the most part of them being antioxidant agents with a high tolerability and safety profile. In particular relatively large body of evidence support the use of potassium, L-arginine, vitamin C, cocoa flavonoids, beetroot juice, coenzyme Q10, controlled-release melatonin, and aged garlic extract. However there is a need for data about the long-term safety of a large part of the above discussed products. Moreover further clinical research is advisable to identify between the available active nutraceuticals those with the best cost-effectiveness and risk-benefit ratio for a large use in general population with low-added cardiovascular risk related to uncomplicated hypertension.

    Topics: Amino Acids; Beta vulgaris; Blood Pressure; Carotenoids; Clinical Trials as Topic; Dietary Supplements; Fatty Acids, Unsaturated; Flavonoids; Fruit and Vegetable Juices; Garlic; Humans; Hypertension; Lycopene; Magnesium; Melatonin; Meta-Analysis as Topic; Minerals; Peptides; Plant Extracts; Potassium; Probiotics; Proteins; Resveratrol; Stilbenes; Ubiquinone; Vitamins

2015
Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction.
    Clinica chimica acta; international journal of clinical chemistry, 2015, Oct-23, Volume: 450

    Advancing age is a major risk factor for the development of cardiovascular diseases. The aetiology of several cardiovascular disorders is thought to involve impaired mitochondrial function and oxidative stress. Coenzyme Q10 (CoQ10) acts as both an antioxidant and as an electron acceptor at the level of the mitochondria. Furthermore, in cardiac patients, plasma CoQ10 has been found to be an independent predictor of mortality. Based on the fundamental role of CoQ10 in mitochondrial bioenergetics and its well-acknowledged antioxidant properties, several clinical trials evaluating CoQ10 have been undertaken in cardiovascular disorders of ageing including chronic heart failure, hypertension, and endothelial dysfunction. CoQ10 as a therapy appears to be safe and well tolerated.

    Topics: Aging; Antioxidants; Endothelial Cells; Heart Failure; Humans; Hypertension; Ubiquinone

2015
Myocardial energetics and ubiquinol in diastolic heart failure.
    Nursing & health sciences, 2014, Volume: 16, Issue:4

    Diastolic heart failure, or heart failure with preserved ejection fraction, is a leading cause of morbidity and mortality. There are no current therapies effective in improving outcomes for these patients. The aim of this article is to review the literature and examine the role of coenzyme Q10 in heart failure with preserved ejection fraction related to mitochondrial synthesis of adenosine triphosphate and reactive oxygen species production. The study results reflect that myocardial energetics alters in diastolic heart failure and that there is defective energy metabolism and increased oxidative stress. Studies are emerging to evaluate coenzyme Q10 , particularly ubiquinol, as a supplemental treatment for heart-failure patients. In diastolic heart-failure patients, clinicians are beginning to use supplemental therapies to improve patient outcomes, and one promising complementary treatment to improve left ventricular diastolic function is ubiquinol. Additional studies are needed using large-scale randomized models to confirm if ubiquinol would be beneficial. Since ubiquinol is an antioxidant and is required for adenosine triphosphate production, clinicians and health scientists should be aware of the potential role of this supplement in the treatment of diastolic heart failure.

    Topics: Heart Failure, Diastolic; Humans; Hypertension; Ubiquinone

2014
Evidence of clinically relevant efficacy for dietary supplements and nutraceuticals.
    Current hypertension reports, 2013, Volume: 15, Issue:3

    Beyond the well-known effects on blood pressure (BP) of the DASH and the Mediterranean diets, a large number of studies have investigated the possible a BP-lowering effect from different dietary supplements and nutraceuticals, mostly antioxidant agents with a high tolerability and safety profile. In particular, a relatively large body of evidence support the use of potassium, L-arginine, vitamin C, cocoa flavonoids, coenzyme Q10, controlled-release melatonin, and aged garlic extract. However there is a need for data about the long-term safety of a large part of these products. Moreover, further clinical research is advisable to identify between the available active nutraceuticals and those with the best cost-effectiveness and risk-benefit ratio for widespread use in a general population with low added cardiovascular risk related to uncomplicated hypertension.

    Topics: Antioxidants; Blood Pressure; Dietary Supplements; Humans; Hypertension; Ubiquinone

2013
Dietary supplements and hypertension: potential benefits and precautions.
    Journal of clinical hypertension (Greenwich, Conn.), 2012, Volume: 14, Issue:7

    Dietary supplements (DSs) are used extensively in the general population and many are promoted for the natural treatment and management of hypertension. Patients with hypertension often choose to use these products either in addition to or instead of pharmacologic antihypertensive agents. Because of the frequent use of DS, both consumers and health care providers should be aware of the considerable issues surrounding these products and factors influencing both efficacy and safety. In this review of the many DSs promoted for the management of hypertension, 4 products with evidence of possible benefits (coenzyme Q10, fish oil, garlic, vitamin C) and 4 that were consistently associated with increasing blood pressure were found (ephedra, Siberian ginseng, bitter orange, licorice). The goals and objectives of this review are to discuss the regulation of DS, evaluate the efficacy of particular DS in the treatment of hypertension, and highlight DS that may potentially increase blood pressure.

    Topics: Ascorbic Acid; Citrus; Dietary Supplements; Eleutherococcus; Ephedra; Fish Oils; Garlic; Glycyrrhiza; Humans; Hypertension; Ubiquinone; United States

2012
Coenzyme Q10: a therapy for hypertension and statin-induced myalgia?
    Cleveland Clinic journal of medicine, 2010, Volume: 77, Issue:7

    Some small clinical trials seem to show that coenzyme Q10 supplements can be used to lower blood pressure and to treat or prevent myalgia caused by hydroxymethylglutaryl coenzyme A reductase inhibitors (statins). However, larger trials are needed to determine if they are truly effective for these purposes. The authors examine the evidence and also discuss issues such as bioavailability, elimination, safety, and cost.

    Topics: Antihypertensive Agents; Dietary Supplements; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Muscular Diseases; Risk Assessment; Ubiquinone; Vitamins

2010
Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome.
    Pharmacology & therapeutics, 2009, Volume: 124, Issue:3

    Coenzyme Q10 (ubiquinone) is a mitochondrial coenzyme which is essential for the production of ATP. Being at the core of cellular energy processes it assumes importance in cells with high energy requirements like the cardiac cells which are extremely sensitive to CoQ10 deficiency produced by cardiac diseases. CoQ10 has thus a potential role for prevention and treatment of heart ailments by improving cellular bioenergetics. In addition it has an antioxidant, a free radical scavenging and a vasodilator effect which may be helpful in these conditions. It inhibits LDL oxidation and thus the progression of atherosclerosis. It decreases proinflammatory cytokines and decreases blood viscosity which is helpful in patients of heart failure and coronary artery disease. It also improves ischemia and reperfusion injury of coronary revascularisation. Significant improvement has been observed in clinical and hemodynamic parameters and in exercise tolerance in patients given adjunctive CoQ10 in doses from 60 to 200 mg daily in the various trials conducted in patients of heart failure, hypertension, ischemic heart disease and other cardiac illnesses. Recently it has been found to be an independent predictor of mortality in congestive heart failure. It has also been found to be helpful in vertigo and Meniere-like syndrome by improving the immune system. Further research is going on to establish firmly its role in the therapy of cardiovascular diseases.

    Topics: Animals; Cardiotonic Agents; Clinical Trials as Topic; Heart Diseases; Humans; Hypertension; Meniere Disease; Ubiquinone; Vitamins

2009
Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension.
    The Cochrane database of systematic reviews, 2009, Oct-07, Issue:4

    Studies have shown that coenzyme Q10 deficiency is associated with cardiovascular disease. Hypertension is a commonly measured surrogate marker for non-fatal and fatal cardiovascular endpoints such as heart attacks and strokes. Clinical trials have suggested that coenzyme Q10 supplementation can effectively lower blood pressure (BP).. To determine the blood pressure lowering effect of coenzyme Q10 in primary hypertension.. The Cochrane Central Register of Controlled Trials (2009 Issue 2), MEDLINE (1966 -May 2008), EMBASE (1982 - May 2008), and CINAHL (1970 - May 2008) as well as the reference lists of articles were searched for relevant clinical trials in any language.. Double-blind, randomized, placebo-controlled parallel or crossover trials evaluating the BP lowering efficacy of coenzyme Q10 for a duration of at least 3 weeks in patients with primary hypertension.. The primary author independently assessed the risk of bias and extracted the data. The second author verified data extraction.. Three clinical trials with a total of 96 participants were evaluated for the effects of coenzyme Q10 on blood pressure compared to placebo. Treatment with coenzyme Q10 in subjects with systolic BP (SBP) > 140 mmHg or diastolic BP (DBP) > 90 mmHg resulted in mean decreases in SBP of 11 mmHg (95% CI 8, 14) and DBP of 7 mmHg (95% CI 5, 8).. Due to the possible unreliability of some of the included studies, it is uncertain whether or not coenzyme Q10 reduces blood pressure in the long-term management of primary hypertension.

    Topics: Antihypertensive Agents; Bias; Blood Pressure; Humans; Hypertension; Randomized Controlled Trials as Topic; Ubiquinone

2009
Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials.
    Journal of human hypertension, 2007, Volume: 21, Issue:4

    Our objective was to review all published trials of coenzyme Q10 for hypertension, assess overall efficacy and consistency of therapeutic action and side effect incidence. Meta-analysis was performed in 12 clinical trials (362 patients) comprising three randomized controlled trials, one crossover study and eight open label studies. In the randomized controlled trials (n=120), systolic blood pressure in the treatment group was 167.7 (95% confidence interval, CI: 163.7-171.1) mm Hg before, and 151.1 (147.1-155.1) mm Hg after treatment, a decrease of 16.6 (12.6-20.6, P<0.001) mm Hg, with no significant change in the placebo group. Diastolic blood pressure in the treatment group was 103 (101-105) mm Hg before, and 94.8 (92.8-96.8) mm Hg after treatment, a decrease of 8.2 (6.2-10.2, P<0.001) mm Hg, with no significant change in the placebo group. In the crossover study (n=18), systolic blood pressure decreased by 11 mm Hg and diastolic blood pressure by 8 mm Hg (P<0.001) with no significant change with placebo. In the open label studies (n=214), mean systolic blood pressure was 162 (158.4-165.7) mm Hg before, and 148.6 (145-152.2) mm Hg after treatment, a decrease of 13.5 (9.8-17.1, P<0.001) mm Hg. Mean diastolic blood pressure was 97.1 (95.2-99.1) mm Hg before, and 86.8 (84.9-88.8) mm Hg after treatment, a decrease of 10.3 (8.4-12.3, P<0.001) mm Hg. We conclude that coenzyme Q10 has the potential in hypertensive patients to lower systolic blood pressure by up to 17 mm Hg and diastolic blood pressure by up to 10 mm Hg without significant side effects.

    Topics: Blood Pressure; Clinical Trials as Topic; Coenzymes; Cross-Over Studies; Databases, Factual; Humans; Hypertension; Randomized Controlled Trials as Topic; Research Design; Treatment Outcome; Ubiquinone; Vitamins

2007
Coenzyme Q10 in cardiovascular disease.
    Mitochondrion, 2007, Volume: 7 Suppl

    In this review we summarise the current state of knowledge of the therapeutic efficacy and mechanisms of action of CoQ(10) in cardiovascular disease. Our conclusions are: 1. There is promising evidence of a beneficial effect of CoQ(10) when given alone or in addition to standard therapies in hypertension and in heart failure, but less extensive evidence in ischemic heart disease. 2. Large scale multi-centre prospective randomised trials are indicated in all these areas but there are difficulties in funding such trials. 3. Presently, due to the notable absence of clinically significant side effects and likely therapeutic benefit, CoQ(10) can be considered a safe adjunct to standard therapies in cardiovascular disease.

    Topics: Adenosine Triphosphate; Anthracyclines; Antioxidants; Cardiovascular Diseases; Clinical Trials as Topic; Coenzymes; Diet; Heart Failure; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Ischemia; Mitochondria; Models, Biological; Ubiquinone

2007
The clinical application of metabolic therapy for cardiovascular disease.
    Heart, lung & circulation, 2007, Volume: 16 Suppl 3

    Metabolic therapy involves the administration of a substance normally found in the body to enhance a metabolic reaction within the cell. This may be achieved in two ways. Firstly, for some systems a substance can be given to achieve greater than normal levels in the body so as to drive an enzymic reaction in a preferred direction. Secondly, metabolic therapy may be used to correct an absolute or relative deficiency of a cellular component. Thus, metabolic therapy differs greatly from most standard cardiovascular pharmacologic therapies such as the use of ACE Inhibitors, beta-blockers, statins and calcium channel antagonists that are given to block rather than enhance cellular processes.

    Topics: Adaptation, Physiological; Cardiovascular Diseases; Coenzymes; Exercise; Glucose; Heart Failure; Humans; Hypertension; Insulin; Meditation; Orotic Acid; Physical Therapy Modalities; Potassium; Thioctic Acid; Ubiquinone

2007
Coenzyme Q10.
    The Medical letter on drugs and therapeutics, 2006, Feb-27, Volume: 48, Issue:1229

    Topics: Amyotrophic Lateral Sclerosis; Antioxidants; Clinical Trials as Topic; Coenzymes; Costs and Cost Analysis; Heart Failure; Humans; Hypertension; Migraine Disorders; Mitochondrial Encephalomyopathies; Parkinson Disease; Ubiquinone

2006
The natural treatment of hypertension.
    Journal of clinical hypertension (Greenwich, Conn.), 2004, Volume: 6, Issue:5

    The goal of this review is to evaluate the efficacy of commonly available dietary supplements in the treatment of hypertension, using the average blood pressure reduction achieved with the implementation of lifestyle modifications as a standard. For this reason, the authors focus on the antihypertensive potential of these agents rather than pharmacology, pharmacokinetics, adverse effects, or supplement-drug interactions. For the purpose of this review, dietary supplements are defined as exhibiting some evidence of benefit if a systolic blood pressure reduction of 9.0 mm Hg or greater and/or a diastolic blood pressure reduction of 5.0 mm Hg or greater has been observed in previously published, peer-reviewed trials. These defining limits are based on the average blood pressure reduction associated with the implementation of certain lifestyle modifications. Agents with some evidence of benefit include coenzyme Q10, fish oil, garlic, vitamin C, and L-arginine.

    Topics: Antihypertensive Agents; Arginine; Ascorbic Acid; Coenzymes; Complementary Therapies; Dietary Supplements; Fish Oils; Garlic; Humans; Hypertension; Treatment Outcome; Ubiquinone

2004
Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure.
    BioFactors (Oxford, England), 2003, Volume: 18, Issue:1-4

    COENZYME Q10 IN PHYSICAL EXERCISE. We identified eleven studies in which CoQ10 was tested for an effect on exercise capacity, six showed a modest improvement in exercise capacity with CoQ10 supplementation but five showed no effect. CoQ10 IN HYPERTENSION. We identified eight published trials of CoQ10 in hypertension. Altogether in the eight studies the mean decrease in systolic blood pressure was 16 mm Hg and in diastolic blood pressure, 10 mm Hg. Being devoid of significant side effects CoQ10 may have a role as an adjunct or alternative to conventional agents in the treatment of hypertension. CoQ10 IN HEART FAILURE. We performed a randomised double blind placebo-controlled pilot trial of CoQ10 therapy in 35 patients with heart failure. Over 3 months, in the CoQ10 patients but not in the placebo patients there were significant improvements in symptom class and a trend towards improvements in exercise time. META-ANALYSIS OF RANDOMISED TRIALS OF COENZYME Q10 IN HEART FAILURE. In nine randomised trials of CoQ10 in heart failure published up to 2003 there were non-significant trends towards increased ejection fraction and reduced mortality. There were insufficient numbers of patients for meaningful results. To make more definitive conclusions regarding the effect of CoQ10 in cardiac failure we recommend a prospective, randomised trial with 200-300 patients per study group. Further trials of CoQ10 in physical exercise and in hypertension are recommended.

    Topics: Cardiac Output, Low; Coenzymes; Exercise; Humans; Hypertension; MEDLINE; Meta-Analysis as Topic; Muscle, Skeletal; Oxygen Consumption; Randomized Controlled Trials as Topic; Ubiquinone

2003
Coenzyme Q10 and cardiovascular disease: a review.
    The Journal of cardiovascular nursing, 2002, Volume: 16, Issue:4

    This article provides a comprehensive review of 30 years of research on the use of coenzyme Q10 in prevention and treatment of cardiovascular disease. This endogenous antioxidant has potential for use in prevention and treatment of cardiovascular disease, particularly hypertension, hyperlipidemia, coronary artery disease, and heart failure. It appears that levels of coenzyme Q10 are decreased during therapy with HMG-CoA reductase inhibitors, gemfibrozil, Adriamycin, and certain beta blockers. Further clinical trials are warranted, but because of its low toxicity it may be appropriate to recommend coenzyme Q10 to select patients as an adjunct to conventional treatment.

    Topics: Animals; Cardiomyopathies; Cardiovascular Diseases; Complementary Therapies; Coronary Disease; Heart Failure; Humans; Hypertension; Myocardial Infarction; Ubiquinone

2002
Role of coenzyme Q10 in chronic heart failure, angina, and hypertension.
    Pharmacotherapy, 2001, Volume: 21, Issue:7

    Coenzyme Q10 (CoQ10) has a pathophysiologic role in many disease states. The purpose of this review is to provide recommendations regarding the safety, efficacy, and dosing of CoQ10 in the management of chronic heart failure (CHF), angina, and hypertension.. Literature pertaining to the safety and efficacy of CoQ10 specifically in cardiovascular indications was reviewed. We used relevant clinical trials, articles, reviews, and letters that were selected from a literature search of the MEDLINE database (1974-2000), Micromedex Healthcare Series, and the Natural Medicines Comprehensive Database.. Coenzyme Q10 administered orally has favorable actions in the described cardiovascular conditions and appears to be safe and well tolerated in the adult population. Issues concerning optimum target dosages, potential interactions, monitoring parameters, and the role of CoQ10 as a monotherapeutic agent need to be investigated further. Favorable effects of CoQ10 on ejection fraction, exercise tolerance, cardiac output, and stroke volume are demonstrated in the literature; thus, the use of CoQ10 as adjuvant therapy in patients with CHF may be supported.. Coenzyme Q10 therapy in angina and hypertension cannot be substantiated until additional clinical trials demonstrate consistent beneficial effects. However, CoQ10 may be recommended as adjuvant therapy in selected patients with CHE At this time, CoQ10 should not be recommended as monotherapy or first-line therapy in any disease state.

    Topics: Angina, Unstable; Animals; Antioxidants; Chronic Disease; Clinical Trials as Topic; Coenzymes; Heart Failure; Humans; Hypertension; Ubiquinone

2001
Overview of the use of CoQ10 in cardiovascular disease.
    BioFactors (Oxford, England), 1999, Volume: 9, Issue:2-4

    The clinical experience in cardiology with CoQ10 includes studies on congestive heart failure, ischemic heart disease, hypertensive heart disease, diastolic dysfunction of the left ventricle, and reperfusion injury as it relates to coronary artery bypass graft surgery. The CoQ10-lowering effect of HMG-CoA reductase inhibitors and the potential adverse consequences are of growing concern. Supplemental CoQ10 alters the natural history of cardiovascular illnesses and has the potential for prevention of cardiovascular disease through the inhibition of LDL cholesterol oxidation and by the maintenance of optimal cellular and mitochondrial function throughout the ravages of time and internal and external stresses. The attainment of higher blood levels of CoQ10 (> 3.5 micrograms/ml) with the use of higher doses of CoQ10 appears to enhance both the magnitude and rate of clinical improvement. In this communication, 34 controlled trials and several open-label and long-term studies on the clinical effects of CoQ10 in cardiovascular diseases are reviewed.

    Topics: Antioxidants; Cardiovascular Diseases; Clinical Trials as Topic; Coenzymes; Coronary Artery Bypass; Heart Failure; Humans; Hypertension; Myocardial Ischemia; Reperfusion Injury; Ubiquinone; Ventricular Dysfunction, Left

1999
Co-enzyme Q10: a new drug for cardiovascular disease.
    Journal of clinical pharmacology, 1990, Volume: 30, Issue:7

    Co-enzyme Q10 (ubiquinone) is a naturally occurring substance which has properties potentially beneficial for preventing cellular damage during myocardial ischemia and reperfusion. It plays a role in oxidative phosphorylation and has membrane stabilizing activity. The substance has been used in oral form to treat various cardiovascular disorders including angina pectoris, hypertension, and congestive heart failure. Its clinical importance is now being established in clinical trails worldwide.

    Topics: Administration, Oral; Cardiovascular Diseases; Chemical Phenomena; Chemistry; Coenzymes; Doxorubicin; Free Radicals; Heart Arrest, Induced; Heart Failure; Humans; Hypertension; Ischemia; Reperfusion; Ubiquinone

1990
[Clinical pharmacology of coenzyme Q10].
    Przeglad lekarski, 1988, Volume: 45, Issue:9

    Topics: Drug Evaluation; Heart Diseases; Humans; Hypertension; Ubiquinone

1988

Trials

16 trial(s) available for ubiquinone and Hypertension

ArticleYear
Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: a randomized clinical trial.
    Nutrition journal, 2022, 10-03, Volume: 21, Issue:1

    Metabolic syndrome (MetS) as a cluster of conditions including hyperlipidemia, hypertension, hyperglycemia, insulin resistance, and abdominal obesity is linked to cardiovascular diseases and type 2 diabetes. Evidence suggested that intake of curcumin and coenzyme Q10 may have therapeutic effects in the management of MetS.. We investigated the effects of curcumin and/or coenzyme Q10 supplementation on metabolic syndrome components including systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference (WC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and fasting plasma glucose (FPG) as primary outcomes, and total cholesterol (TC), low density lipoprotein-cholesterol (LDL-c) and body mass index (BMI) as secondary outcomes in subjects with MetS.. In this 2 × 2 factorial, randomized, double-blinded, placebo-controlled study, 88 subjects with MetS were randomly assigned into four groups including curcumin plus placebo (CP), or coenzyme Q10 plus placebo (QP), or curcumin plus coenzyme Q10 (CQ), or double placebo (DP) for 12 weeks.. The CP group compared with the three other groups showed a significant reduction in HDL-c (P = 0.001), TG (P <  0.001), TC (P <  0.001), and LDL-c (P <  0.001). No significant differences were seen between the four groups in terms of SBP, DBP, FPG, WC, BMI and weight.. Curcumin improved dyslipidemia, but had no effect on body composition, hypertension and glycemic control. Furthermore, coenzyme Q10 as well as the combination of curcumin and coenzyme Q10 showed no therapeutic effects in subjects with MetS. The trial was registered on 09/21/2018 at the Iranian clinical trials website (IRCT20180201038585N2), URL: https://www.irct.ir/trial/32518 .

    Topics: Blood Glucose; Cholesterol, HDL; Cholesterol, LDL; Curcumin; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; Hypertension; Iran; Metabolic Syndrome; Triglycerides; Ubiquinone

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy.

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea

2022
Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, Volume: 105

    Metabolic syndrome (MetS) is a world-wide epidemic disease with an increased risk of morbidity and mortality. Treatment strategies of MetS include pharmacologic and non-pharmacologic interventions and in this respect a relevant role has been shown for nutraceutical compounds (NCs). The aim of this study was to investigate the efficacy and safety of NCs incorporated with diet and lifestyle management versus diet alone, in lowering blood pressure (BP) values and improving lipid and glucose profile, in a group of hypertensives and hyper-cholesterolemic patients with MetS.. 104 subjects with MetS (mean age 57.4 ± 8.8 years, 51% males) without history of cardio-vascular (CV) diseases were enrolled in the study. 52 subjects were treated with a once-daily oral formulation of a NCs containing red yeast rice and coenzyme Q10 added to their diet for 2 months and were compared with the 52 patients following a diet program. Differences in BP, serum total cholesterol (TC), low- and high-density-lipoprotein cholesterol (LDLC and HDLC), triglycerides (TG) and glucose values were compared by analysis of variance.. A significant reduction of BP, TC, TG, LDLC and glucose levels was observed in both treatment groups. However, a greater reduction of systolic BP (-5.2 vs. -3.0 mmHg), diastolic BP (-4.9 vs. 2.9 mmHg), total cholesterol (-17.2%), LDLC (-21.8%), TG (-16.0%) and serum glucose (-3.4%) was observed in the treatment group relative to the control (p < 0.001 for all); HDLC remained unchanged (p = N.S.). Gender difference was not found in either group (p = N.S.).. In patients with MetS, NC supplementation was safe, well tolerated and effective in improving clinic BP, lipid and glucose profile.

    Topics: Aged; Anticholesteremic Agents; Blood Glucose; Cholesterol, HDL; Cholesterol, LDL; Diet, Mediterranean; Dietary Supplements; Female; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Hypertension; Lovastatin; Male; Metabolic Syndrome; Middle Aged; Treatment Outcome; Triglycerides; Ubiquinone

2018
    Neural computing & applications, 2018, Volume: 30, Issue:6

    Im Rahmen der vorliegenden Studie sollte der Einfluss des Weichteilschadens auf das klinische Ergebnis nach offener Ellenbogenluxation untersucht werden.. Von Oktober 2008 bis August 2015 wurden insgesamt 230 Patienten mit Ellenbogenluxation behandelt. Diese retrospektive Studie umfasst 21 Fälle von offenen Ellenbogenluxationen. Das Durchschnittsalter der Patienten betrug 49 Jahre alt (20–83 Jahre), 6 Patienten waren weiblich (29%), 15 männlich (71%). Das Bewegungsausmaß des verletzten und unverletzten Ellenbogens wurde erhoben und das funktionelle Ergebnis u. a. mittels Mayo Elbow Performance Score (MEPS), Mayo Wrist Score (MWS) und dem Disability of Arm, Shoulder and Hand (DASH) Score erfasst. Zusätzlich wurden Komplikationen und Revisionsoperationen aufgezeichnet. Der Einfluss des Weichteilschadens (I°/II° offen vs. III° offen) und des Luxationstyps (einfach vs. komplex) auf das klinische Ergebnis wurde analysiert.. Offene Ellenbogenluxationen können mit einem zufriedenstellenden klinischen Ergebnis einhergehen. Insbesondere komplexe offene Ellenbogenluxationen sind jedoch sehr komplikationsbehaftet, wobei neurovaskuläre Komplikationen am häufigsten auftreten.. The current high rate of multidrug-resistant gram-negative bacteria infections among hospitalised patients with cUTIs in the studied area is alarming. Our predictive model could be useful to avoid inappropriate antibiotic treatment and implement antibiotic stewardship policies that enhance the use of carbapenem-sparing regimens in patients at low risk of multidrug-resistance.. The results indicated differential patterns of Inhibition of Return between the High and Low shape/weight based self-worth groups. The High group displayed increased inhibition of return for the shape/weight stimuli relative to control stimuli, while the Low group displayed reduced inhibition of return for the shape/weight stimuli compared to control stimuli. The ED group displayed a similar pattern of results to the High group, but this did not reach significance.. The current findings indicate that young women without an eating disorder who base their self-worth on shape/weight display a pattern of avoidance of shape/weight stimuli that is in direct contrast to those at low risk of developing eating disorders. The possible implications of these specific patterns of inhibition of return across those at varying levels of risk for an eating disorder are discussed along with their implications for intervention approaches.. These results indicated that Sr. An unusually high HbA

    Topics: Activities of Daily Living; Acute Disease; Adalimumab; Adaptation, Physiological; Adenosine Triphosphate; Adipose Tissue; Administration, Intravaginal; Adolescent; Adsorption; Adult; Adverse Childhood Experiences; Age Distribution; Age Factors; Aged; Aged, 80 and over; Air Pollution, Indoor; Aldehyde Oxidase; Alginates; Alloys; alpha-Globins; Aluminum Hydroxide; Alveolar Bone Loss; Anaerobiosis; Anesthesia, General; Anesthetics; Animals; Anovulation; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Apoptosis; Bacillus cereus; Bacterial Typing Techniques; Bacteroidetes; Base Composition; Biocompatible Materials; Biofilms; Biological Availability; Biological Transport; Biosensing Techniques; Bipolar Disorder; Blood Glucose; Body Mass Index; Bone Regeneration; Boranes; Brachial Artery; Butyric Acid; Candida albicans; Carbon; Carcinoembryonic Antigen; Cell Differentiation; Cell Line, Tumor; Cell Respiration; Cell Survival; Cells, Cultured; Cerebrovascular Circulation; Charcoal; Child; Child Health; China; Chloride Channels; Chlorides; CHO Cells; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromium; Chronic Disease; Chronic Periodontitis; Circular Dichroism; Cities; Cohort Studies; Comamonadaceae; Comorbidity; Coronary Artery Disease; Corrosion; Cricetinae; Cricetulus; Cross Infection; Cross-Sectional Studies; Crowding; Culture Media; Cytokines; Diabetes Mellitus; Diabetes Mellitus, Type 2; Diabetes, Gestational; Diarylheptanoids; Diclofenac; Disability Evaluation; Diterpene Alkaloids; DNA; DNA Mutational Analysis; DNA, Bacterial; Drug Liberation; Drug Resistance, Multiple, Bacterial; Electrochemical Techniques; Electrodes; Electrolytes; Endothelium, Vascular; Enterococcus faecalis; Epithelial Cell Adhesion Molecule; Epithelial Cells; Erbium; Erythropoietin; Ethanol; Ethylenediamines; Fast Foods; Fatty Acids; Female; Fermentation; Ferric Compounds; Fibroblasts; Flavobacteriaceae; Fluorides; Fluorodeoxyglucose F18; Food Microbiology; Formaldehyde; Furaldehyde; Gamma Cameras; Gene Expression; Geologic Sediments; Glucose Tolerance Test; Glycated Hemoglobin; Glycolipids; Glycosylation; Gracilaria; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Guanine; Health Surveys; HeLa Cells; Hemoglobins, Abnormal; Hexosamines; High Fructose Corn Syrup; High-Intensity Interval Training; Hip Fractures; Hippocampus; HLA-B27 Antigen; Hospitalization; Housing; Humans; Hydrogen-Ion Concentration; Hydrolysis; Hydroxides; Hypercapnia; Hypertension; Hypocreales; Hypromellose Derivatives; Image Processing, Computer-Assisted; Incidence; Indole Alkaloids; Indonesia; Inflammation Mediators; Infrared Rays; Insulin Resistance; Intercalating Agents; Ion Transport; Ionophores; Japan; Kinetics; Kluyveromyces; Letrozole; Linear Models; Lipopolysaccharides; Liposomes; Liver; Lung Diseases; Magnesium Hydroxide; Magnetic Resonance Spectroscopy; Male; Membrane Glycoproteins; Membrane Transport Proteins; Mice, Inbred BALB C; Microbial Sensitivity Tests; Microbial Viability; Microscopy, Electron, Transmission; Middle Aged; Mitochondria; Mitochondria, Muscle; Molecular Docking Simulation; Molecular Structure; Muscle, Skeletal; Mutant Proteins; Mutation; Mutation, Missense; Nanocomposites; Nanoparticles; Neoplasm Recurrence, Local; Neoplastic Cells, Circulating; Nucleic Acid Hybridization; Obesity; Occupational Exposure; Oceans and Seas; Odds Ratio; Organometallic Compounds; Osteogenesis; Ovulation Induction; Oxidation-Reduction; Particle Size; Periodontal Ligament; Permeability; Phaseolus; Phenotype; Philippines; Phosphatidylethanolamines; Phospholipids; Photochemical Processes; Phylogeny; Pichia; Pigmentation; Plant Extracts; Polycystic Ovary Syndrome; Polysaccharides; Postprandial Period; Pregnancy; Pregnancy Rate; Prevalence; Product Surveillance, Postmarketing; Progesterone; Progestins; Protein Engineering; Pseudomonas aeruginosa; Psoriasis; Public Facilities; Rats; Rats, Wistar; Receptors, Thyrotropin; Recombinant Proteins; Reproducibility of Results; Republic of Korea; Retrospective Studies; Rhodobacteraceae; Risk; Risk Assessment; Risk Factors; RNA, Ribosomal, 16S; ROC Curve; Saccharomyces cerevisiae; Salinity; Saliva; Seawater; Seaweed; Sensitivity and Specificity; Sequence Analysis, DNA; Sex Factors; Silver Compounds; Smokers; Social Class; Socioeconomic Factors; Soil Microbiology; Solubility; Soy Foods; Spectrometry, Mass, Electrospray Ionization; Spondylitis, Ankylosing; Staphylococcus aureus; Static Electricity; Steroids; Strontium; Sucrose; Surface Properties; Survival Rate; Sweden; Swine; Synapses; Synchrotrons; Tandem Mass Spectrometry; Tannins; Tea; Temperature; Terpenes; Thalidomide; Thermodynamics; Thiadiazoles; Thyroid Cancer, Papillary; Thyroid Neoplasms; Thyroidectomy; Time Factors; Tissue Distribution; Titanium; Toilet Facilities; Tomography, Emission-Computed, Single-Photon; Treatment Outcome; Ubiquinone; Urinary Tract Infections; Vaginal Creams, Foams, and Jellies; Venezuela; Vitamin K 2; Waist Circumference; Waste Disposal, Fluid; Wastewater; Water Microbiology; Water Pollutants, Chemical; Whole Body Imaging; X-Ray Diffraction; Young Adult; Ytterbium; Yttrium; Yttrium Radioisotopes; Zinc Compounds

2018
Nutraceuticals for Serum Lipid and Blood Pressure Control in Hypertensive and Hypercholesterolemic Subjects at Low Cardiovascular Risk.
    Advances in therapy, 2015, Volume: 32, Issue:7

    Primary cardiovascular (CV) prevention may be achieved by lifestyle/nutrition changes, although a relevant role is now emerging for specific, functional foods and nutraceutical compounds (NCs). The aim of this study was to investigate the efficacy and safety of NCs in lowering blood pressure (BP) and improving lipid profile, when added to diet and lifestyle management versus diet alone in a group of patients with hypertension (HT) and hypercholesterolemia (HCh) with low CV risk.. Sixty-six patients with HT and HCh with grade 1 essential HT (mean age 56.0 ± 4.6 years) without history of CV diseases or organ damage were analyzed. These subjects were started on one tablet of an NC-containing red yeast rice, policosanol, berberine, folic acid and coenzyme Q10 once daily for 6 months and were age and gender matched with subjects following a diet program. Differences in clinic BP, 24-h ambulatory BP (24 h-ABPM), serum total cholesterol, low-density and high-density lipoprotein cholesterol (LDL-C and HDL-C) and triglyceride values were compared by analysis of variance.. In the treatment group, a significant reduction of systolic 24 h-ABPM (141.6 ± 6.4 vs. 136.2 ± 4.8 mmHg; p < 0.05) and pulse pressure 24 h-ABPM (52.6 ± 7.2 vs. 47.3 ± 5.4 mmHg; p < 0.05) was found at the end of follow-up. A reduction of total cholesterol (-19.2%), LDL-C (-17.4%) and triglycerides (-16.3%) was observed (p < 0.001 for all); HDL-C remained unchanged. No difference was found in the control group.. The tested NCs was found to be safe, well tolerated and effective in reducing mean 24-h systolic and 24-h pulse pressure and in improving lipid pattern.

    Topics: Berberine; Biological Products; Blood Pressure; Cardiovascular Diseases; Diet; Dietary Supplements; Fatty Alcohols; Female; Folic Acid; Health Behavior; Humans; Hypercholesterolemia; Hypertension; Life Style; Lipids; Male; Middle Aged; Risk Factors; Ubiquinone

2015
The Effect of Coenzyme Q10 Supplementation on Pro-Inflammatory Factors and Adiponectin in Mildly Hypertensive Patients: A Randomized, Double-Blind, Placebo-Controlled Trial.
    International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 2015, Volume: 85, Issue:3-4

    There is considerable evidence that hypertension may increase the levels of cytokines via endothelial stimulation and may stimulate inflammatory reactions. The purpose of this study was to evaluate the effect of oral coenzyme Q10 supplementation on pro-inflammatory factors and adiponectin in mildly hypertensive patients.. This 12-week randomized, double-blind, placebo-controlled clinical trial was carried out during 2012 - 2013 in Yazd. Sixty mildly hypertensive patients were randomly divided into two groups: placebo (PG, n = 30) and coenzyme Q10 (QG, n = 30). The QG was given 1 capsule containing 100 mg Q10 per day. The PG was given 1 capsule of the same size and color as the Q10 capsules, but it contained 100 mg of lactose. Plasma pro-inflammatory factors (IL6, IL2, and TNF-α), adiponectin, and hs-CRP were determined before and after the intervention.. The mean enhancement in adiponectin of QG was significantly higher than PG (from 21.1 ± 14.5 to 24.2 ± 15.5 ng/ml, P = 0.04). Significant declines in the median of IL6 (from 23 to 16 pg/ml, P = 0.001) and in the mean of hs-CRP were also observed in QG after intervention (from 3.53 ± 3.36 to 2.62 ± 2.51 mg/L, P = 0.03). In the two groups, no significant statistical changes were seen in the median of TNF-α and IL2.. Daily supplementation of 100 mg coenzyme Q10 can be effective in decreasing some pro-inflammatory factors, such as IL6 and hs-CRP, and in increasing adiponectin.

    Topics: Adiponectin; Adult; Cytokines; Double-Blind Method; Female; Gene Expression Regulation; Humans; Hypertension; Male; Middle Aged; Ubiquinone

2015
A randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the metabolic syndrome.
    American journal of hypertension, 2012, Volume: 25, Issue:2

    Our aim was to examine the effects of adjunctive coenzyme Q(10) therapy on 24-h ambulatory blood pressure (BP) in subjects with the metabolic syndrome and inadequate BP control.. In a randomized, double-blind, placebo-controlled 12-week crossover trial, coenzyme Q(10) (100 mg twice daily) or placebo was administrated to 30 subjects with the metabolic syndrome, and inadequate BP control (an average clinic BP of ≥140 systolic mm Hg or ≥130 mm Hg for patients with type 2 diabetes) while taking an unchanged, conventional antihypertensive regimen. Clinic and 24-h ambulatory BP were assessed pre- and post-treatment phases. The primary outcomes were the changes in 24-h systolic and diastolic BP during adjunctive therapy with coenzyme Q(10) vs. placebo and prespecified secondary outcomes included changes in BP loads.. Compared with placebo, treatment with coenzyme Q(10) was not associated with statistically significant reductions in systolic (P = 0.60) or diastolic 24-h ambulatory BP (P = 0.12) or heart rate (P = 0.10), although daytime diastolic BP loads, were significantly lower during coenzyme Q(10) administration with thresholds set at >90 mm Hg (P = 0.007) and ≥85 mm Hg (P = 0.03). Coenzyme Q(10) was well tolerated and was not associated with any clinically relevant changes in safety parameters.. Although it is possible that coenzyme Q(10) may improve BP control under some circumstances, any effects are likely to be smaller than reported in previous meta-analyses. Furthermore, our data suggest that coenzyme Q(10) is not currently indicated as adjunctive antihypertensive treatment for patients with the metabolic syndrome whose BP control is inadequate, despite regular antihypertensive therapy.

    Topics: Aged; Antihypertensive Agents; Antioxidants; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Cross-Over Studies; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Heart Rate; Humans; Hypertension; Male; Metabolic Syndrome; Middle Aged; Treatment Outcome; Ubiquinone; Vitamins

2012
Nutraceuticals for blood pressure control in patients with high-normal or grade 1 hypertension.
    High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 2012, Sep-01, Volume: 19, Issue:3

    Current hypertension management guidelines do not recommend drug treatment in subjects with blood pressure (BP) in the high-normal range due to the risk of side effects of the currently available antihypertensive agents that overcomes the possible benefit. Nutraceuticals are free from relevant side effects and could be a valuable strategy for the treatment of these patients.. The objective of this study was to compare the efficacy of two nutraceutical compositions given by the combination of policosanol, red yeast rice extract, berberine, folic acid and coenzyme Q(10) with or without Orthosiphon stamineus in lowering the BP and lipid profile.. Thirty patients with grade 1 essential hypertension and low cardiovascular risk were analysed. At the end of a run-in period, patients were divided into two study arms and assigned to receive the nutraceutical combination with and without Orthosiphon stamineus. All participants underwent 24-hour ambulatory BP monitoring at the end of the run-in period and of the 4-week treatment with each of the two different nutraceutical combinations.. In patients treated with Orthosiphon stamineus a significant reduction of mean 24-hour systolic and diastolic BP levels compared with baseline values was registered and the smoothness index calculated for systolic and diastolic BP showed a more reliable and homogeneous effect on BP over 24 hours. In contrast, nutraceutical treatment without Orthosiphon stamineus was not associated with a significant reduction of BP.. Our results show that the addition of Orthosiphon stamineus to the combination of nutraceuticals confers an antihypertensive effect that allows a surprisingly effective 24-hour BP control in hypertensive patients.

    Topics: Adult; Antihypertensive Agents; Biological Products; Blood Pressure; Circadian Rhythm; Dietary Supplements; Drug Therapy, Combination; Female; Folic Acid; Humans; Hypertension; Male; Middle Aged; Orthosiphon; Plant Extracts; Severity of Illness Index; Treatment Outcome; Ubiquinone

2012
[Application of coenzyme Q(10) in combination therapy of arterial hypertension].
    Kardiologiia, 2011, Volume: 51, Issue:6

    We studied effect of coenzyme Q(10) on 24-hour blood pressure profile and function of vascular endothelium in patients with essential hypertension. Coenzyme Q(10) was used as a component of combination therapy comprising angiotensin converting enzyme inhibitor enalapril. Administration of coenzyme Q(10) in combination with traditional antihypertensive therapy promoted normalization of vascular endothelial function and more effective correction of 24-hour blood pressure profile. These findings allow to consider the use of coenzyme Q(10) as promising component of combination therapy of arterial hypertension.

    Topics: Antihypertensive Agents; Blood Pressure; Drug Monitoring; Drug Therapy, Combination; Enalapril; Endothelium-Dependent Relaxing Factors; Endothelium, Vascular; Female; Humans; Hypertension; Male; Middle Aged; Time Factors; Treatment Outcome; Ubiquinone; Vasodilation; Vitamins

2011
The effects of [omega]3 fatty acids and coenzyme Q10 on blood pressure and heart rate in chronic kidney disease: a randomized controlled trial.
    Journal of hypertension, 2009, Volume: 27, Issue:9

    Chronic kidney disease (CKD) associates with increased cardiovascular disease (CVD) risk. Hypertension is a major determinant of progression of CKD. Omega-3 fatty acids (omger3FA) protect against CVD via improvements in blood pressure, heart rate, vascular reactivity and serum lipids. Coenzyme Q(10) (CoQ) may improve blood pressure and vascular function. This study determined whether omega3FA and CoQ have independent or additive effects in improving the cardiovascular profile, particularly blood pressure and heart rate, in nondiabetic patients with CKD stages 3-4.. In a double-blind, placebo-controlled intervention, patients were randomized to either omega3FA (4 g), CoQ (200 mg), both supplements or control (4 g), daily for 8 weeks.. Eighty-five patients aged 56.5 +/- 1.4 years; BMI 27.3 +/- 0.5 kg/m(2); supine blood pressure 125.0/72.3mmHg; and glomerular filtration rate 35.8 +/- 1.2 ml/min/1.73m(2), were randomized. Seventy-four completed the study. omega3FA, but not CoQ, reduced 24-h ambulatory heart rate (P<0.0001) and blood pressure (P<0.0001). Main effects for omega3FA on 24-h measurements were -3.3 +/- 0.7/ -2.9 +/- 0.5mmHg and -4.0 +/- 0.5 bpm. Postintervention blood pressure showed significant interactions between treatments. omega3FA reduced triglycerides 24% (P<0.001). There were no changes in glomerular filtration rate, urinary albumin or total protein excretion, cholesterol, HDL-cholesterol (C), LDL-C, glucose, insulin, or high-sensitivity C-reactive protein.. This study has shown that omega3FA reduce blood pressure, heart rate and triglycerides in patients with CKD. CoQ had no independent effect on blood pressure but increased heart rate. These results show that omega3FA lower blood pressure and may reduce cardiovascular risk in nondiabetic patients with moderate-to-severe CKD.

    Topics: Adult; Aged; Albuminuria; Arteries; Blood Glucose; Blood Platelets; Blood Pressure; Diet; Double-Blind Method; Drug Synergism; Dyslipidemias; Echocardiography; Fatty Acids; Fatty Acids, Omega-3; Female; Heart Rate; Humans; Hypertension; Insulin; Life Style; Male; Middle Aged; Phospholipids; Renal Insufficiency, Chronic; Ubiquinone

2009
Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertension.
    Southern medical journal, 2001, Volume: 94, Issue:11

    Increasing numbers of the adult population are using alternative or complementary health resources in the treatment of chronic medical conditions. Systemic hypertension affects more than 50 million adults and is one of the most common risk factors for cardiovascular morbidity and mortality. This study evaluates the antihypertensive effectiveness of oral coenzyme Q10 (CoQ), an over-the-counter nutritional supplement, in a cohort of 46 men and 37 women with isolated systolic hypertension.. We conducted a 12-week randomized, double-blind, placebo-controlled trial with twice daily administration of 60 mg of oral CoQ and determination of plasma CoQ levels before and after the 12 weeks of treatment.. The mean reduction in systolic blood pressure of the CoQ-treated group was 17.8 +/- 7.3 mm Hg (mean +/- SEM). None of the patients exhibited orthostatic blood pressure changes.. Our results suggest CoQ may be safely offered to hypertensive patients as an alternative treatment option.

    Topics: Administration, Oral; Aged; Antioxidants; Blood Pressure; Chromatography, High Pressure Liquid; Coenzymes; Cohort Studies; Dietary Supplements; Double-Blind Method; Female; Humans; Hypertension; Male; Middle Aged; Ubiquinone

2001
Effect of hydrosoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery disease.
    Journal of human hypertension, 1999, Volume: 13, Issue:3

    In a randomised, double-blind trial among patients receiving antihypertensive medication, the effects of the oral treatment with coenzyme Q10 (60 mg twice daily) were compared for 8 weeks in 30 (coenzyme Q10: group A) and 29 (B vitamin complex: group B) patients known to have essential hypertension and presenting with coronary artery disease (CAD). After 8 weeks of follow-up, the following indices were reduced in the coenzyme Q10 group: systolic and diastolic blood pressure, fasting and 2-h plasma insulin, glucose, triglycerides, lipid peroxides, malondialdehyde and diene conjugates. The following indices were increased: HDL-cholesterol, vitamins A, C, E and beta-carotene (all changes P<0.05). The only changes in the group taking the B vitamin complex were increases in vitamin C and beta-carotene (P<0.05). These findings indicate that treatment with coenzyme Q10 decreases blood pressure possibly by decreasing oxidative stress and insulin response in patients with known hypertension receiving conventional antihypertensive drugs.

    Topics: Administration, Oral; Antioxidants; Blood Glucose; Blood Pressure; Coenzymes; Coronary Disease; Cytoprotection; Double-Blind Method; Female; Follow-Up Studies; Humans; Hypertension; Insulin; Insulin Resistance; Lipid Peroxides; Male; Malondialdehyde; Middle Aged; Oxidative Stress; Surveys and Questionnaires; Treatment Outcome; Triglycerides; Ubiquinone

1999
Usefulness of coenzyme Q10 in clinical cardiology: a long-term study.
    Molecular aspects of medicine, 1994, Volume: 15 Suppl

    Over an eight year period (1985-1993), we treated 424 patients with various forms of cardiovascular disease by adding coenzyme Q10 (CoQ10) to their medical regimens. Doses of CoQ10 ranged from 75 to 600 mg/day by mouth (average 242 mg). Treatment was primarily guided by the patient's clinical response. In many instances, CoQ10 levels were employed with the aim of producing a whole blood level greater than or equal to 2.10 micrograms/ml (average 2.92 micrograms/ml, n = 297). Patients were followed for an average of 17.8 months, with a total accumulation of 632 patient years. Eleven patients were omitted from this study: 10 due to non-compliance and one who experienced nausea. Eighteen deaths occurred during the study period with 10 attributable to cardiac causes. Patients were divided into six diagnostic categories: ischemic cardiomyopathy (ICM), dilated cardiomyopathy (DCM), primary diastolic dysfunction (PDD), hypertension (HTN), mitral valve prolapse (MVP) and valvular heart disease (VHD). For the entire group and for each diagnostic category, we evaluated clinical response according to the New York Heart Association (NYHA) functional scale, and found significant improvement. Of 424 patients, 58 per cent improved by one NYHA class, 28% by two classes and 1.2% by three classes. A statistically significant improvement in myocardial function was documented using the following echocardiographic parameters: left ventricular wall thickness, mitral valve inflow slope and fractional shortening. Before treatment with CoQ10, most patients were taking from one to five cardiac medications. During this study, overall medication requirements dropped considerably: 43% stopped between one and three drugs. Only 6% of the patients required the addition of one drug. No apparent side effects from CoQ10 treatment were noted other than a single case of transient nausea. In conclusion, CoQ10 is a safe and effective adjunctive treatment for a broad range of cardiovascular diseases, producing gratifying clinical responses while easing the medical and financial burden of multidrug therapy.

    Topics: Cardiomyopathy, Dilated; Cardiovascular Agents; Cardiovascular Diseases; Coenzymes; Diastole; Drug Therapy, Combination; Echocardiography; Female; Follow-Up Studies; Heart Function Tests; Heart Valve Diseases; Humans; Hypertension; Male; Middle Aged; Mitral Valve Prolapse; Myocardial Ischemia; Treatment Outcome; Ubiquinone

1994
Coenzyme Q10 in essential hypertension.
    Molecular aspects of medicine, 1994, Volume: 15 Suppl

    This study was undertaken to clarify the mechanism of the antihypertensive effect of coenzyme Q10 (CoQ10). Twenty-six patients with essential arterial hypertension were treated with oral CoQ10, 50 mg twice daily for 10 weeks. Plasma CoQ10, serum total and high-density lipoprotein (HDL) cholesterol, and blood pressure were determined in all patients before and at the end of the 10-week period. At the end of the treatment, systolic blood pressure (SBP) decreased from 164.5 +/- 3.1 to 146.7 +/- 4.1 mmHg and diastolic blood pressure (DBP) decreased from 98.1 +/- 1.7 to 86.1 +/- 1.3 mmHg (P < 0.001). Plasma CoQ10 values increased from 0.64 +/- 0.1 microgram/ml to 1.61 +/- 0.3 micrograms/ml (P < 0.02). Serum total cholesterol decreased from 222.9 +/- 13 mg/dl to 213.3 +/- 12 mg/dl (P < 0.005) and serum HDL cholesterol increased from 41.1 +/- 1.5 mg/dl to 43.1 +/- 1.5 mg/dl (P < 0.01). In a first group of 10 patients serum sodium and potassium, plasma clinostatic and orthostatic renin activity, urinary aldosterone, 24-hour sodium and potassium were determined before and at the end of the 10-week period. In five of these patients peripheral resistances were evaluated with radionuclide angiocardiography. Total peripheral resistances were 2,283 +/- 88 dyne.s.cm-5 before treatment and 1,627 +/- 158 dyn.s.cm-5 after treatment (P < 0.02). Plasma renin activity, serum and urinary sodium and potassium, and urinary aldosterone did not change. In a second group of 11 patients, plasma endothelin, electrocardiogram, two-dimensional echocardiogram and 24-hour automatic blood pressure monitoring were determined.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adult; Aged; Aldosterone; Antihypertensive Agents; Blood Pressure; Cholesterol; Cholesterol, HDL; Coenzymes; Echocardiography; Electrocardiography; Endothelins; Female; Humans; Hypercholesterolemia; Hypertension; Male; Middle Aged; Potassium; Renin; Sodium; Treatment Outcome; Ubiquinone; Vascular Resistance

1994
Treatment of essential hypertension with coenzyme Q10.
    Molecular aspects of medicine, 1994, Volume: 15 Suppl

    A total of 109 patients with symptomatic essential hypertension presenting to a private cardiology practice were observed after the addition of CoQ10 (average dose, 225 mg/day by mouth) to their existing antihypertensive drug regimen. In 80 per cent of patients, the diagnosis of essential hypertension was established for a year or more prior to starting CoQ10 (average 9.2 years). Only one patient was dropped from analysis due to noncompliance. The dosage of CoQ10 was not fixed and was adjusted according to clinical response and blood CoQ10 levels. Our aim was to attain blood levels greater than 2.0 micrograms/ml (average 3.02 micrograms/ml on CoQ10). Patients were followed closely with frequent clinic visits to record blood pressure and clinical status and make necessary adjustments in drug therapy. Echocardiograms were obtained at baseline in 88% of patients and both at baseline and during treatment in 39% of patients. A definite and gradual improvement in functional status was observed with the concomitant need to gradually decrease antihypertensive drug therapy within the first one to six months. Thereafter, clinical status and cardiovascular drug requirements stabilized with a significantly improved systolic and diastolic blood pressure. Overall New York Heart Association (NYHA) functional class improved from a mean of 2.40 to 1.36 (P < 0.001) and 51% of patients came completely off of between one and three antihypertensive drugs at an average of 4.4 months after starting CoQ10. Only 3% of patients required the addition of one antihypertensive drug. In the 9.4% of patients with echocardiograms both before and during treatment, we observed a highly significant improvement in left ventricular wall thickness and diastolic function.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adult; Aged; Aged, 80 and over; Antihypertensive Agents; Blood Pressure; Coenzymes; Diastole; Drug Therapy, Combination; Echocardiography; Female; Heart Ventricles; Humans; Hypertension; Male; Middle Aged; Severity of Illness Index; Treatment Outcome; Ubiquinone

1994
Bioenergetics in clinical medicine. VIII. Adminstration of coenzyme Q10 to patients with essential hypertension.
    Research communications in chemical pathology and pharmacology, 1976, Volume: 14, Issue:4

    Coenzyme Q10 has been administered to five patients having essential hypertension and deficiencies of activity of succinate dehydrogenase-co-enzyme Q10 reductase in leucocyte preparations ranging from 20-40%. For a 74-year old male, the systolic pressure was reduced (p less than 0.001), the diastolic pressure was reduced (p less than 0.05), the specific activity of the coenzyme Q10-enzyme was increased (p less than 0.001), and the deficiency of coenzyme Q10 activity was negated (p less than 0.01). Four patients receiving CoQ10 for 3-5 months showed reductions (p less than 0.05 to p less than 0.001) of diastolic pressure, and 3 of these 4 showed reductions (p less than 0.05 to p less than 0.01) of diastolic pressure. Initial deficiencies of enzyme activity were reduced (p less than 0.01 to 0.05) in two patients. Three other patients did not show the high level of deficiency on treatment as initially observed. These effects of CoQ10 on the reduction of systolic and diastolic blood pressures, increase in CoQ10-enzyme activity, and reduction of CoQ10-deficiency are presumably due to improved bioenergetics through correction of a deficiency of coenzyme Q10.

    Topics: Adult; Aged; Blood Pressure; Clinical Trials as Topic; Female; Humans; Hypertension; Male; Middle Aged; Oxidoreductases; Succinate Dehydrogenase; Ubiquinone

1976

Other Studies

43 other study(ies) available for ubiquinone and Hypertension

ArticleYear
Antihypertensive Potential of Coenzyme Q10 via Free Radical Scavenging and Enhanced Akt-nNOS Signaling in the Nucleus Tractus Solitarii in Rats.
    Molecular nutrition & food research, 2019, Volume: 63, Issue:6

    In the Natural Medicines database, coenzyme Q10 (CoQ10) is classified as possibly effective for the treatment of hypertension. Patients with hypertension frequently have a significant deficiency of the antioxidant CoQ10. Furthermore, reactive oxygen species are overproduced in the nucleus tractus solitarii (NTS) during the cardiovascular regulation of hypertension in vivo. However, the molecular mechanisms by which CoQ10 modulates cardiovascular functions in the NTS are unclear. In this study, the effects of CoQ10 on superoxide generation, downstream NO signaling in the NTS, and blood pressure were evaluated in rats with fructose-induced hypertension.. Treatment with oral CoQ10 for 4 weeks abolished nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activation, decreased p38 phosphorylation, and increased superoxide dismutase 2 production in the NTS of fructose-fed rats. The serum levels of uric acid decrease in response to CoQ10 treatment in fructose-fed rats. Oral CoQ10 reduced blood pressure by inducing Akt and nNOS phosphorylation in NTS of fructose-induced hypertensive rats.. Oral CoQ10 decreases blood pressure by negatively regulating fructose-induced NADPH oxidase levels, abolishing ROS generation, reducing p38 phosphorylation, and enhancing the Akt-nNOS pathway in the NTS. These results support the beneficial effects of CoQ10 in oxidative stressassociated hypertension.

    Topics: Animals; Antihypertensive Agents; Free Radical Scavengers; Fructose; Glucose Transporter Type 1; Hypertension; Insulin; Male; NADPH Oxidases; Nitric Oxide Synthase Type I; Proto-Oncogene Proteins c-akt; Rats, Wistar; Solitary Nucleus; Superoxide Dismutase; Ubiquinone; Uric Acid

2019
Renoprotective Effects of Antroquinonol in Rats with N
    Nutrients, 2018, Oct-17, Volume: 10, Issue:10

    Topics: Animals; Anti-Inflammatory Agents; Antihypertensive Agents; Antioxidants; Antrodia; Arginine; Arterioles; Biological Products; Biomarkers; Blood Pressure; Disease Models, Animal; Hypertension; Inflammation; Kidney; Kidney Diseases; Male; Malondialdehyde; NG-Nitroarginine Methyl Ester; Oxidative Stress; Rats, Wistar; Ubiquinone

2018
Potential Cardiovascular and Renal Protective Effects of Vitamin D and Coenzyme Q
    The American journal of the medical sciences, 2017, Volume: 354, Issue:2

    Hypertension is one of the primary modifiable risk factors for cardiovascular disease. Adequate vitamin D (vit D) levels have been shown to reduce vascular smooth muscle contraction and to increase arterial compliance, which may be beneficial in hypertension. Further, coenzyme Q10 (COQ10) through its action to lower oxidative stress has been reported to have beneficial effects on hypertension and heart failure. This study examined the possible cardiac and renal protective effects of vit D and COQ10 both separately and in combination with an angiotensin II receptor blocker, valsartan (vals) in l-NAME hypertensive rats.. Hypertension was induced in rats by l-NAME administration. Following induction of hypertension, the rats were assigned into the following 6 subgroups: an l-NAME alone group and treated groups receiving the following drugs intraperitoneally for 6 weeks; vals, vit D, COQ10 and combination of vals with either vit D or COQ10. A group of normotensive rats were used as negative controls. At the end of the treatment period, blood pressure, serum creatinine, blood urea nitrogen, lipids and serum, cardiac and renal parameters of oxidative stress were measured.. Compared to the l-NAME only group, all treatments lowered systolic, diastolic, mean arterial pressure, total cholesterol, low-density lipoprotein cholesterol, and creatinine levels as well as TNF-α and malondialdehyde. Further, the agents increased serum, cardiac and renal total antioxidant capacity. Interestingly, the combination of agents had further effects on all the parameters compared to treatment with each single agent.. The study suggests that the additive protective effects of vit D and COQ10 when used alone or concurrent with vals treatment in hypertensive rats may be due to their effects as antioxidants, anticytokines and blood pressure conservers.

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Cardiovascular Diseases; Hypertension; Kidney Diseases; NG-Nitroarginine Methyl Ester; Rats; Rats, Wistar; Ubiquinone; Valsartan; Vitamin D; Vitamins

2017
Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus.
    Scientific reports, 2016, 07-25, Volume: 6

    High salt intake leads to an increase in some proinflammatory cytokines and neurotransmitters involved in the pathogenesis of hypertension. The purpose of this work was to know if oral administration of anti-oxidant and free-radical scavenger CoQ10 may attenuate high salt-induced hypertension via regulating neurotransmitters and cytokines in the hypothalamic paraventricular nucleus (PVN). Adult male Sprague-Dawley (SD) rats were fed with a normal salt diet (NS, 0.3% NaCl) or a high salt diet (HS, 8% NaCl) for 15 weeks to induce hypertension. These rats received CoQ10 (10 mg/kg/day) dissolved in olive oil was given by gavage (10 mg/kg/day) for 15 weeks. HS resulted in higher mean arterial pressure (MAP) and the sympathetic nerve activity (RSNA). These HS rats had higher PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), interleukin (IL)-1β, NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), IL-10, copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. CoQ10 supplementation reduced NE, TH, IL-1β, NOX2 and NOX4 in the PVN, and induced IL-10, Cu/Zn-SOD and GAD67 in the PVN. These findings suggest that CoQ10 supplementation restores neurotransmitters and cytokines in the PVN, thereby attenuating high salt-induced hypertension.

    Topics: Animals; Antioxidants; Free Radical Scavengers; Gene Expression Regulation; Humans; Hypertension; Interleukin-1beta; NADPH Oxidase 2; Neurotransmitter Agents; Norepinephrine; Paraventricular Hypothalamic Nucleus; Rats; Salts; Superoxide Dismutase-1; Tyrosine 3-Monooxygenase; Ubiquinone

2016
Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function.
    Journal of hypertension, 2014, Volume: 32, Issue:3

    Mitochondria-derived reactive oxygen species (ROS) play important roles in the development of cardiovascular disease highlighting the need for novel targeted therapies. This study assessed the potential therapeutic benefit of combining the mitochondria-specific antioxidant, MitoQ10, with the low-dose angiotensin receptor blocker (ARB), losartan, on attenuation of hypertension and left ventricular hypertrophy. In parallel, we investigated the impact of MitoQ10 on cardiac hypertrophy in a neonatal cardiomyocyte cell line.. Eight-week-old male stroke-prone spontaneously hypertensive rats (SHRSPs, n=8-11) were treated with low-dose losartan (2.5 mg/kg per day); MitoQ10 (500 μmol/l); a combination of MitoQ10 and losartan (M+L); or vehicle for 8 weeks. Systolic pressure and pulse pressure were significantly lower in M+L rats (167.1 ± 2.9 mmHg; 50.2 ± 2.05 mmHg) than in untreated SHRSP (206.6 ± 9 mmHg, P<0.001; 63.7 ± 2.7 mmHg, P=0.001) and demonstrated greater improvement than MitoQ10 or low-dose losartan alone, as measured by radiotelemetry. Left ventricular mass index was significantly reduced from 22.8 ± 0.74 to 20.1 ± 0.61 mg/mm in the combination group (P<0.05). Picrosirius red staining showed significantly reduced cardiac fibrosis in M+L rats (0.82 ± 0.22 A.U.) compared with control (5.94 ± 1.35 A.U., P<0.01). In H9c2 neonatal rat cardiomyocytes, MitoQ10 significantly inhibited angiotensin II mediated hypertrophy in a dose-dependent manner (500  nmol/l MitoQ10 153.7 ± 3.1 microns vs. angiotensin II 200.1 ± 3.6 microns, P<0.001).. Combining MitoQ10 and low-dose losartan provides additive therapeutic benefit, significantly attenuating development of hypertension and reducing left ventricular hypertrophy. In addition, MitoQ10 mediates a direct antihypertrophic effect on rat cardiomyocytes in vitro. MitoQ10 has potential as a novel therapeutic intervention in conjunction with current antihypertensive drugs.

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Antioxidants; Cell Enlargement; Cell Line; Drug Synergism; Hypertension; Hypertrophy, Left Ventricular; Losartan; Male; Myocytes, Cardiac; Organophosphorus Compounds; Rats; Rats, Inbred SHR; Ubiquinone

2014
Nondrug interventions for the treatment of hypertension: varying effect.
    Journal of clinical hypertension (Greenwich, Conn.), 2012, Volume: 14, Issue:1

    Topics: Diet, Sodium-Restricted; Disease Management; Health Behavior; Humans; Hypertension; Life Style; Ubiquinone; Vitamins

2012
Existence of compensatory defense mechanisms against oxidative stress and hypertension in preeclampsia.
    Hypertension in pregnancy, 2010, Volume: 29, Issue:1

    Preeclampsia is a complex obstetrical syndrome characterized by hypertension and proteinuria. This syndrome is associated with oxidative stress, antioxidant imbalance and impaired production of vasoactive eicosanoids such as thromboxane A(2) (TXA(2)), a potent vasoconstrictor, and prostacyclin (PGI(2)), a well-known vasodilator. We hypothesized that there was a relationship between antioxidant vitamins, such as vitamin E and coenzyme Q(10) (CoQ(10)), and the production of vasoactive eicosanoids- PGI(2) and TXA(2)-potentially regulated by pro-oxidants and antioxidants in preeclampsia.. Therefore, the plasma levels of vitamin E, CoQ(10), TXA(2) and PGI(2) in normotensive (n = 30) and preeclamptic (n = 29) pregnancies were evaluated. Reduced and oxidized forms of vitamin E and CoQ(10) in blood were measured using a HPLC coupled to electrochemical detection. The levels of TXB(2) and 6-keto-PGF(1alpha), stable metabolites of TXA(2) and PGI(2) respectively, were measured by ELISA.. The CoQ(10) oxidized/reduced ratio was significantly higher in preeclamptic compared to normotensive pregnancies (p = 0.04). A strong correlation between plasma levels of reduced vitamin E and CoQ(10), corrected for apolipoprotein B, was observed only in preeclampsia (r = 0.69, p < 0.0001). The 6-keto-PGF(1alpha)/TXB(2) ratio was higher in preeclampsia than in controls (p = 0.02), and this ratio was correlated to the oxidized/reduced ratio of both, vitamin E and CoQ(10) in all pregnancies (p <0.023).. The data indicated that CoQ(10) is a sensitive marker of oxidative stress in preeclampsia. The correlation between vitamin E and CoQ(10) suggested a coordinated defense mechanism against oxidation. Furthermore, the higher 6-keto-PGF(1alpha)/TXB(2) ratio that strongly correlated with oxidative stress markers, suggests a mechanism developed by the maternal cardiovascular system to counteract hypertension during preeclampsia.

    Topics: Adult; Chromatography, High Pressure Liquid; Enzyme-Linked Immunosorbent Assay; Epoprostenol; Fatty Acids; Female; Humans; Hypertension; Oxidative Stress; Patient Selection; Pre-Eclampsia; Pregnancy; Thromboxane A2; Ubiquinone; Vitamin E

2010
[Assessment of quality of life after inclusion of coenzyme Q10 in the scheme of treatment of women with arterial hypertension and elevated risk of cardiovascular complications].
    Kardiologiia, 2010, Volume: 50, Issue:12

    Topics: Administration, Oral; Adult; Aged; Blood Pressure; Dose-Response Relationship, Drug; Dyslipidemias; Female; Heart Failure; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Middle Aged; Obesity; Quality of Life; Retrospective Studies; Surveys and Questionnaires; Treatment Outcome; Ubiquinone; Vitamins

2010
Have no fear, MitoQ10 is here.
    Hypertension (Dallas, Tex. : 1979), 2009, Volume: 54, Issue:2

    Topics: Animals; Antioxidants; Cardiovascular Diseases; Humans; Hypertension; Mitochondria, Muscle; Myocardium; Organophosphorus Compounds; Oxidation-Reduction; Rats; Reactive Oxygen Species; Tandem Mass Spectrometry; Ubiquinone

2009
Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy.
    Hypertension (Dallas, Tex. : 1979), 2009, Volume: 54, Issue:2

    Mitochondria are a major site of reactive oxygen species production, which may contribute to the development of cardiovascular disease. Protecting mitochondria from oxidative damage should be an effective therapeutic strategy; however, conventional antioxidants are ineffective, because they cannot penetrate the mitochondria. This study investigated the role of mitochondrial oxidative stress during development of hypertension in the stroke-prone spontaneously hypertensive rat, using the mitochondria-targeted antioxidant, MitoQ(10). Eight-week-old male stroke-prone spontaneously hypertensive rats were treated with MitoQ(10) (500 mumol/L; n=16), control compound decyltriphenylphosphonium (decylTPP; 500 mumol/L; n=8), or vehicle (n=9) in drinking water for 8 weeks. Systolic blood pressure was significantly reduced by approximately 25 mm Hg over the 8-week MitoQ(10) treatment period compared with decylTPP (F=5.94; P=0.029) or untreated controls (F=65.6; P=0.0001). MitoQ(10) treatment significantly improved thoracic aorta NO bioavailability (1.16+/-0.03 g/g; P=0.002, area under the curve) compared with both untreated controls (0.68+/-0.02 g/g) and decylTPP-treated rats (0.60+/-0.06 g/g). Cardiac hypertrophy was significantly reduced by MitoQ(10) treatment compared with untreated control and decylTPP treatment (MitoQ(10): 4.01+/-0.05 mg/g; control: 4.42+/-0.11 mg/g; and decylTPP: 4.40+/-0.09 mg/g; ANOVA P=0.002). Total MitoQ(10) content was measured in liver, heart, carotid artery, and kidney harvested from MitoQ(10)-treated rats by liquid chromatography-tandem mass spectrometry. All of the organs analyzed demonstrated detectable levels of MitoQ(10), with comparable accumulation in vascular and cardiac tissues. Administration of the mitochondria-targeted antioxidant MitoQ(10) protects against the development of hypertension, improves endothelial function, and reduces cardiac hypertrophy in young stroke-prone spontaneously hypertensive rats. MitoQ(10) provides a novel approach to attenuate mitochondrial-specific oxidative damage with the potential to become a new therapeutic intervention in human cardiovascular disease.

    Topics: Analysis of Variance; Animals; Antioxidants; Blood Pressure; Cardiomegaly; Disease Models, Animal; Drug Delivery Systems; Endothelium, Vascular; Hypertension; Male; Membrane Potential, Mitochondrial; Mitochondria; Oxidative Stress; Probability; Random Allocation; Rats; Rats, Inbred SHR; Risk Factors; Sensitivity and Specificity; Ubiquinone

2009
Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy?
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2007, Volume: 67, Issue:2

    Coenzyme Q10 (CoQ10) is an antioxidant with well-established pharmacological activities against several chronic diseases; however, it is marketed only as a nutritional supplement without any claims of its therapeutic activity and one of the reasons for this could be the poor oral bioavailability rendering difficulties in administering this molecule to achieve therapeutic concentrations. Therefore, the present investigation was aimed at improving the oral bioavailability of CoQ10 by delivering it as nanoparticulate formulation. Biodegradable nanoparticulate formulations based on poly(lactide-co-gylcolide) (PLGA) were prepared by emulsion technique using quaternary ammonium salt didodecyldimethylammonium bromide (DMAB) as a stabilizer. The effect of initial CoQ10 loading on entrapment efficiency and the particle size was studied using 5-75% initial load resulting in good entrapment efficiency (61-83%) without any appreciable increase in the particle size for 5-30% loading (107-110 nm). However, 50% and 75% led to increase in particle size with no appreciable changes in entrapment efficiency. The intestinal uptake of CoQ10 as a suspension in carboxymethylcellulose (CMC), a commercial formulation and the developed nanoparticulate formulation was studied in male Sprague-Dawley (SD) rats and found to be 45%, 75% and 79%, respectively, suggesting that solubility and permeability related problems of CoQ10 were overcome by nanoparticulate formulation. Furthermore, the developed nanoparticulate formulation was evaluated for its therapeutic potential in renal hypertensive animals (Goldblatt 2K1C model), demonstrating improved efficacy at a 60% lowered dose as compared to CoQ10 suspension and superior efficacy than the commercial formulation at an equal dose. Together, these results indicate the potential of nanotechnology in improving the therapeutic value of molecules like CoQ10, facilitating its usage as first line therapeutic agent thus revolutionizing its role in current medical therapy.

    Topics: Administration, Oral; Animals; Antioxidants; Biocompatible Materials; Blood Pressure; Chemistry, Pharmaceutical; Coenzymes; Dietary Supplements; Free Radicals; Humans; Hypertension; Lipid Peroxidation; Nanoparticles; Rats; Rats, Sprague-Dawley; Ubiquinone

2007
Treatment of hypertension with nutraceuticals, vitamins, antioxidants and minerals.
    Expert review of cardiovascular therapy, 2007, Volume: 5, Issue:4

    Hypertension is the most common reason for visits to physicians' offices and the primary reason for prescription drug use. The target organ damage associated with hypertension, such as stroke, myocardial infarction, congestive heart failure, renal disease and large artery disease, can be mitigated by aggressive nondrug and drug therapies. Hypertension is a syndrome of various metabolic, functional and structural abnormalities that must be viewed in a more global setting of cardiovascular risk. Aggressive detection, evaluation and treatment of the 'blood vessel health' is mandatory to modern hypertensive care. Lifestyle modifications in conjunction with vitamins, minerals, antioxidants, nutraceutical supplements, optimal nutrition and drug therapy will prevent and treat hypertension and its sequelae while addressing global cardiovascular risk, vascular biology, endothelial dysfunction and overall vascular health.

    Topics: Calcium; Coenzymes; Comorbidity; Dietary Supplements; Endothelium, Vascular; Garlic; Humans; Hypertension; Life Style; Magnesium; Oxidative Stress; Potassium; Sodium Chloride; Ubiquinone

2007
Simvastatin decreased coenzyme Q in the left ventricle and skeletal muscle but not in the brain and liver in L-NAME-induced hypertension.
    Physiological research, 2007, Volume: 56 Suppl 2

    Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (statins) have been proven to reduce effectively cholesterol level and morbidity and mortality in patients with coronary heart disease and/or dyslipoproteinemia. Statins inhibit synthesis of mevalonate, a precursor of both cholesterol and coenzyme Q (CoQ). Inhibited biosynthesis of CoQ may be involved in some undesirable actions of statins. We investigated the effect of simvastatin on tissue CoQ concentrations in the rat model of NO-deficient hypertension induced by chronic L-NAME administration. Male Wistar rats were treated daily for 6 weeks with L-NAME (40 mg/kg) or with simvastatin (10 mg/kg), another group received simultaneously L-NAME and simvastatin in the same doses. Coenzyme Q(9) and Q(10) concentrations were analyzed by high performance liquid chromatography. L-NAME and simvastatin alone had no effect on CoQ concentrations. However, simultaneous application of L-NAME and simvastatin significantly decreased concentrations of both CoQ homologues in the left ventricle and slightly decreased CoQ(9) concentration in the skeletal muscle. No effect was observed on CoQ level in the liver and brain. We conclude that the administration of simvastatin under the condition of NO-deficiency reduced the level of CoQ in the heart and skeletal muscle what may participate in adverse effect of statins under certain clinical conditions.

    Topics: Animals; Brain; Coenzymes; Disease Models, Animal; Down-Regulation; Heart Ventricles; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Liver; Male; Muscle, Skeletal; NG-Nitroarginine Methyl Ester; Nitric Oxide; Rats; Rats, Wistar; Simvastatin; Time Factors; Ubiquinone

2007
[The influence of phospholipids food and antioxidant at patients with hypertension].
    Voprosy pitaniia, 2006, Volume: 75, Issue:2

    It was investigated the influence of dietary therapy by adding phospholipids (5 gr/daily lecithin) and antioxidant agents (90 mg/daily coenzyme Q10) on clinical and biochemical parameters at patients with hypertension I and II stages. At the end of the 4-week period, decreased systolic and diastolic blood pressure, level of the total cholesterol, lipoprotein low density (LDL) and apolipoprotein A1 in their plasma.

    Topics: Adult; Aged; Antioxidants; Apolipoprotein A-I; Blood Pressure; Cholesterol; Coenzymes; Female; Food; Humans; Hypertension; Lipoproteins, LDL; Male; Middle Aged; Phosphatidylcholines; Phospholipids; Ubiquinone

2006
[Effect of ubiquinone on contractile function and antioxidant status of the myocardium in spontaneously hypertensive rats].
    Kardiologiia, 2006, Volume: 46, Issue:5

    During the period of aging of spontaneously hypertensive rats (SHR) between 6 and 13 weeks the systolic arterial pressure increased from 131+/-2 up to 176+/-3 mm Hg while in the control group of WKY rats it reached 122+/-2 mmHg. The hypertension was combined with myocardial hypertrophy -- the relative weight of SHR heart was 24% higher. The contractile myocardial function of the isolated isovolumic heart of SHR group did not differ from WKY group in a wide range of coronary perfusion rates. During oxidative stress induced by 40-min intracoronary introduction of H(2)O(2) function of hypertrophied SHR hearts fell significantly deeper. This coincided with decreased myocardial activity of superoxide dismutase and glutathione peroxidase by 29-30%, and increased catalase activity by 18%. The rate of generation of active forms of oxygen (hydroxyl radicals HO(.-)) in mitochondria from SHR hearts was higher as compared with WKY. Thus, the development of hypertension was combined with decreased antioxidant protection of the myocardium. The addition of ubiquinone to drinking water (approximately 10 mg/kg/day) for 6 weeks did not affect arterial pressure level, but was associated with two times lesser degree of myocardial hypertrophy. The hearts of SHR that received ubiquinone differed from those not treated with ubiquinone by increased maximal level of myocardial contractile function, and by improved myocardial relaxability and distensibility. After administration of H(2)O(2), myocardial function of SHR was kept on higher level. That was combined with less myocardial oedema, better preservation of antioxidant enzymes and reduced rate of succinate-dependent generation of superoxide radicals in mitochondria from hearts of ubiquinone treated SHR. The results have shown, that administration of ubiquinone to rats with hereditary hypertension reduces degree of myocardial hypertrophy, improves functional properties of the myocardium, promotes effective protection of antioxidant enzymes and increases the resistance of the cardiac muscle to oxidative stress.

    Topics: Animals; Blood Pressure; Catalase; Disease Models, Animal; Follow-Up Studies; Glutathione Peroxidase; Hypertension; Myocardial Contraction; Myocardium; Oxidative Stress; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Superoxide Dismutase; Ubiquinone

2006
Proteomic analysis of early left ventricular hypertrophy secondary to hypertension: modulation by antihypertensive therapies.
    Journal of the American Society of Nephrology : JASN, 2006, Volume: 17, Issue:12 Suppl 3

    Untreated or poorly controlled arterial hypertension induced development of pathologic left ventricular hypertrophy (LVH), a common finding in hypertensive patients and a strong predictor of cardiovascular morbidity and mortality. The proteomic approach is a powerful technique to analyze a complex mixture of proteins in various settings. An experimental model of hypertension-induced early LVH was performed in spontaneously hypertensive rats, and the cardiac protein pattern compared with the normotensive Wistar Kyoto counterpart was analyzed. Fifteen altered protein spots were shown in the early stage of LVH. Compared with a previous animal model of established and regressed LVH, three protein spots were common in both models. These three altered protein spots corresponded to two unique proteins that were identified as Calsarcin-1 (CS-1) and ubiquinone biosynthesis protein COQ7 homolog. CS-1 is a negative regulator of the calcineurin/NF-AT pathway. Because upregulation in the expression levels of this protein was observed, the activation level of NF-kappaB by oxidative stress as an alternative pathway was investigated. It was found that antihypertensive therapies partially decreased oxidative stress and normalized the activation of NF-kappaB in the kidneys and aorta NF-kappaB activation but just moderately in the heart. This could be due to the interaction of any specific cardiac protein with any component of the NF-kappaB pathway. In this sense, CS-1 could be a good candidate because it is expressed preferentially in heart, to a lesser extent in smooth muscle cells, but not in kidney. Further investigations are necessary to elucidate the exact role of CS-1 and ubiquinone biosynthesis protein COQ7 in the setting of hypertension-induced LVH.

    Topics: Animals; Antihypertensive Agents; Aorta; Carrier Proteins; Disease Models, Animal; Gene Expression Profiling; Hypertension; Hypertrophy, Left Ventricular; Kidney; Male; Microfilament Proteins; Muscle Proteins; Myocardium; NF-kappa B; Oxidative Stress; Proteomics; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Ubiquinone

2006
L-arginine fails to protect against myocardial remodelling in L-NAME-induced hypertension.
    European journal of clinical investigation, 2005, Volume: 35, Issue:6

    We investigated whether the substrate for nitric oxide synthesis L-arginine is able to modify hypertension and left ventricular hypertrophy development induced by chronic blockade of nitric oxide synthase activity by NG-nitro-L-arginine-methyl ester (L-NAME).. Four groups of rats were investigated: control, L-arginine 1.5 g kg-1, L-NAME 40 mg kg-1, and L-NAME +L-arginine in corresponding doses. Systolic blood pressure was measured by non-invasive tail-cuff plethysmography each week. After 4 weeks, the animals were sacrificed and hydroxyproline and coenzyme Q9 and Q10 concentrations in the left ventricle, and nitric oxide synthase activity in the left ventricle, kidney and brain were investigated.. In the L-NAME group, nitric oxide synthase activity was decreased in the left ventricle, kidney and brain, and hypertension, left ventricular hypertrophy and fibrosis developed. Heart remodelling was associated with the decrease of coenzyme Q9 and Q10 concentrations in the left ventricle. Simultaneous treatment with L-NAME and L-arginine prevented nitric oxide synthase activity diminution in the left ventricle but not in the kidney and brain, and completely failed to prevent hypertension, left ventricular hypertrophy and fibrosis. Nevertheless, l-arginine prevented the diminution of coenzyme Q9 and Q10 concentrations in the left ventricle.. We conclude that L-arginine failed to prevent hypertension, left ventricular hypertrophy and fibrosis development despite restoration of nitric oxide synthase activity in the left ventricle. However, L-arginine prevented the diminution of coenzyme Q levels in the left ventricle.

    Topics: Animals; Antihypertensive Agents; Arginine; Brain; Hydroxyproline; Hypertension; Hypertrophy, Left Ventricular; Kidney; Male; Myocardium; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Rats; Rats, Wistar; Ubiquinone

2005
Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension.
    Life sciences, 2004, Jan-23, Volume: 74, Issue:10

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals. We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension.

    Topics: Animals; Aorta; Blood Pressure; Body Weight; Coenzymes; DNA; Enzyme Inhibitors; Fibrosis; Hemodynamics; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Male; Myocardium; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Organ Size; Rats; Rats, Wistar; Simvastatin; Ubiquinone; Ventricular Remodeling

2004
Statin-associated exacerbation of myasthenia gravis.
    Neurology, 2004, Dec-14, Volume: 63, Issue:11

    Topics: Atorvastatin; Cytokines; Dysarthria; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hyperlipidemias; Hypertension; Lovastatin; Male; Middle Aged; Mitochondria; Models, Neurological; Muscular Diseases; Myasthenia Gravis; Neural Conduction; Pravastatin; Pyridostigmine Bromide; Pyrroles; Simvastatin; Th2 Cells; Ubiquinone

2004
A close look at coenzyme Q10 and policosanol. Do these supplements live up to their claims for improving heart health?
    Harvard heart letter : from Harvard Medical School, 2002, Volume: 13, Issue:4

    Topics: Anticholesteremic Agents; Attitude to Health; Cardiovascular Diseases; Coenzymes; Fatty Alcohols; Health Promotion; Humans; Hypercholesterolemia; Hypertension; Platelet Aggregation Inhibitors; Quality of Life; Self Medication; Ubiquinone; United States

2002
Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis.
    American heart journal, 2002, Volume: 143, Issue:3

    Antioxidants may prevent atherosclerosis by interfering with endothelial activation, which involves the expression of endothelial adhesion molecules. The aim of this study was to explore the relationship between plasma levels of some lipid-soluble antioxidants (gamma-tocopherol, alpha-tocopherol, lycopene, beta-carotene, and ubiquinone), carotid maximum intima-media thickness (IMTmax), an index of atherosclerotic extension/severity, and soluble adhesion molecules (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and E-selectin), which are taken as a reflection of vascular cell expression of adhesion molecules.. We studied 11 healthy control subjects, 11 patients with uncomplicated hypertension (UH), and 11 patients with essential hypertension plus peripheral vascular disease (PVD) who were matched for age, sex, smoking habit, and body mass index.. Patients with PVD had elevated IMTmax (2.7 [1.1-3.1] mm, median [range]) compared with both patients with UH(1.2 [0.8-2.4] mm) and control subjects (1.0 [0.6-2] mm). In patients with PVD, soluble (s)VCAM-1 and sICAM-1 were also significantly higher than in the 2 other categories. Plasma levels of lycopene had a trend toward lower values in patients with PVD compared with other groups (P =.13). A statistically significant correlation was found between lycopene and IMTmax (r = 0.42, P =.014) at univariate analysis, which persisted at multivariate analysis (P <.05) and was independent of low-density lipoprotein cholesterol, creatinine clearance, and plasma insulin. Plasma lycopene did not significantly correlate with any of the soluble adhesion molecules tested.. We conclude that the inverse relationship of plasma lycopene with IMTmax is compatible with a protective role of this natural dietary antioxidant in atherosclerosis, although the mechanism of protection does not apparently involve a decrease in endothelial activation measured through soluble adhesion molecules.

    Topics: alpha-Tocopherol; Analysis of Variance; Antioxidants; Arteriosclerosis; beta Carotene; Biomarkers; Carotenoids; Carotid Artery Diseases; E-Selectin; Female; gamma-Tocopherol; Humans; Hypertension; Intercellular Adhesion Molecule-1; Lycopene; Male; Middle Aged; Peripheral Vascular Diseases; Ubiquinone; Vascular Cell Adhesion Molecule-1

2002
Coenzyme Q versus hypertension: does CoQ decrease endothelial superoxide generation?
    Medical hypotheses, 1999, Volume: 53, Issue:4

    Reports from several research groups--including two small double-blind clinical studies--indicate that supplemental coenzyme Q10 (CoQ) is moderately effective as a treatment for hypertension, in humans and in animals. Its efficacy is associated with a decrease in total peripheral resistance, and appears to reflect a direct impact of CoQ on the vascular wall. A reasonable interpretation of these findings is that CoQ is acting as an antagonist of vascular superoxide--either scavenging it, or suppressing its synthesis. By improving the efficiency of shuttle mechanisms that transfer high-energy electrons from the cytoplasm to the mitochondrial respiratory chain, CoQ may decrease cytoplasmic NADH levels and thereby diminish the reductive power that drives superoxide synthesis in endothelium and vascular smooth muscle. If CoQ therapy does indeed lower vascular superoxide levels, it can be expected to decrease the atherothrombotic risk associated with hypertension, and may have broader utility in the management of disorders characterized by endotheliopathy.

    Topics: Cytoplasm; Endothelium, Vascular; Humans; Hypertension; Oxidation-Reduction; Superoxides; Ubiquinone; Vascular Resistance

1999
Plasma ubiquinol-10 is decreased in patients with hyperlipidaemia.
    Atherosclerosis, 1997, Feb-28, Volume: 129, Issue:1

    Ubiquinol-10, the reduced form of ubiquinone-10 (coenzyme Q10), is a potent lipophilic antioxidant present in nearly all human tissues. The exceptional oxidative lability of ubiquinol-10 implies that it may represent a sensitive index of oxidative stress. The present study was undertaken to assess the hypothesis that the level of ubiquinol-10 in human plasma can discriminate between healthy subjects and patients who are expected to be subjected to an increased oxidative stress in vivo. Using a newly developed method, we measured plasma ubiquinol-10 in 38 hyperlipidaemic patients with and without further complications, such as coronary heart disease, hypertension, or liver disease, and in 30 healthy subjects. The oxidizability of plasma samples obtained from hyperlipidaemic patients was found to be increased in comparison with control subjects, suggesting that the patients were subjected to a higher oxidative stress in vivo than the controls. Plasma ubiquinol-10, expressed as a percentage of total ubiquinol-10 + ubiquinone-10 or normalized to plasma lipids, was lower in the patients than in controls (P = 0.001 and 0.008, respectively). The proportion of ubiquinol-10 decreased in the order young controls > aged controls > hyperlipidaemic patients without complications > hyperlipidaemic patients with complications (P = 0.003). A negative correlation was found between the proportion of ubiquinol-10 and plasma triglycerides. The hyperlipidaemic patients with hypertension had a lower proportion of ubiquinol-10 than subjects without. When the study population was divided into smokers and non-smokers, plasma ubiquinol-10 was found to be reduced amongst smokers, independently of whether it was expressed as a percentage of total ubiquinol-10 + ubiquinone-10 (P = 0.006) or normalized to plasma lipids (P = 0.009). These data suggest that the level of ubiquinol-10 in human plasma may represent a sensitive index of oxidative stress in vivo especially indicative of early oxidative damage. Measuring plasma ubiquinol-10 can be proposed as a practical approach to assess oxidative stress in humans.

    Topics: Adult; Alcohol Drinking; Amidines; Antidotes; Body Mass Index; Coronary Disease; Female; Humans; Hyperlipidemias; Hypertension; Lipid Peroxidation; Lipoxygenase; Liver Diseases; Male; Middle Aged; Oxidation-Reduction; Oxidative Stress; Regression Analysis; Risk Factors; Smoking; Spectrophotometry; Triglycerides; Ubiquinone

1997
Isolated diastolic dysfunction of the myocardium and its response to CoQ10 treatment.
    The Clinical investigator, 1993, Volume: 71, Issue:8 Suppl

    Symptoms of fatigue and activity impairment, atypical precordial pain, and cardiac arrhythmia frequently precede by years the development of congestive heart failure. Of 115 patients with these symptoms, 60 were diagnosed as having hypertensive cardiovascular disease, 27 mitral valve prolapse syndrome, and 28 chronic fatigue syndrome. These symptoms are common with diastolic dysfunction, and diastolic function is energy dependent. All patients had blood pressure, clinical status, coenzyme Q10 (CoQ10) blood levels and echocardiographic measurement of diastolic function, systolic function, and myocardial thickness recorded before and after CoQ10 replacement. At control, 63 patients were functional class III and 54 class II; all showed diastolic dysfunction; the mean CoQ10 blood level was 0.855 micrograms/ml; 65%, 15%, and 7% showed significant myocardial hypertrophy, and 87%, 30%, and 11% had elevated blood pressure readings in hypertensive disease, mitral valve prolapse and chronic fatigue syndrome respectively. Except for higher blood pressure levels and more myocardial thickening in the hypertensive patients, there was little difference between the three groups. CoQ10 administration resulted in improvement in all; reduction in high blood pressure in 80%, and improvement in diastolic function in all patients with follow-up echocardiograms to date; a reduction in myocardial thickness in 53% of hypertensives and 36% of the combined prolapse and fatigue syndrome groups; and a reduced fractional shortening in those high at control and an increase in those initially low.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Adult; Aged; Aged, 80 and over; Cardiomyopathies; Coenzymes; Diastole; Energy Metabolism; Female; Humans; Hypertension; Incidence; Male; Middle Aged; Ubiquinone

1993
[Can Q-10 be dangerous?].
    Ugeskrift for laeger, 1993, Apr-12, Volume: 155, Issue:15

    Topics: Aged; Coenzymes; Female; Humans; Hypertension; Risk Factors; Ubiquinone

1993
Muscle fibre types, ubiquinone content and exercise capacity in hypertension and effort angina.
    Annals of medicine, 1991, Volume: 23, Issue:3

    The composition of skeletal muscle fibre expressed as a percentage of slow twitch (ST), type I or "red" and fast twitch (FT), type II or "white" were determined in patients with hypertension (HT) or with severe ischaemic heart disease (IHD) and compared to age matched controls. Similarly, exercise capacity expressed as the cycle intensity eliciting a blood lactate concentration corresponding to 2.0 mmol x 1-1 were compared with healthy controls. Both patient groups had a higher percentage of FT fibres with relatively lower exercise capacities than their controls. The exercise capacities were reduced even when the relationship of decreased capacity with the percentage of increased FT was considered. There was an increase IHD but not in HT in patients with fibre subgroup FTc, which most probably reflected fibre trauma. Both patient groups were low in the skeletal muscle mitochondrial electron carrier and unspecific antioxidant ubiquinone, coenzyme Q10 or CoQ10. Patients with IHD but not HT showed, however, a faster fall in the ratio CoQ10 over ST% the higher the percentage value of ST. The ratio reflects the antioxidant activity related to CoQ10 in the fibre hosting most of the oxidative metabolism. A low ratio indicates a risk of metabolic lesion and cell trauma. This could explain fibre plasticity and offer an alternative cause to heredity in elucidating in deviating muscle fibre composition in patients with HT and IHD.

    Topics: Adult; Aged; Angina Pectoris; Humans; Hypertension; Male; Middle Aged; Muscles; Physical Exertion; Ubiquinone

1991
Effects of idebenone on lipid peroxidation and hemolysis in erythrocytes of stroke-prone spontaneously hypertensive rats.
    Archives of gerontology and geriatrics, 1989, Volume: 8, Issue:3

    Stroke-prone spontaneously hypertensive rats (SHRSP) were kept on a 1% NaCl solution as drinking water to shorten the onset-time of a stroke. The level of lipoperoxide (LPO) in the erythrocytes of SHRSP loaded with salt for 22 days was significantly higher than that of the controls. Idebenone treatment (30 mg/kg per day, p.o.) markedly decreased the LPO to the level of the controls. Hemolysis in SHRSP was accelerated by the salt-loading. Idebenone significantly inhibited the hemolysis in a dose-dependent manner. These results suggest that idebenone inhibits lipid peroxidation in erythrocytes and stabilizes the erythrocyte membrane.

    Topics: Animals; Benzoquinones; Cerebrovascular Disorders; Erythrocytes; Hemolysis; Hypertension; Lipid Peroxidation; Male; Quinones; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Ubiquinone

1989
Inhibitory effect of idebenone (CV-2619), a novel compound, on vascular lesions in hypertensive rats.
    Japanese journal of pharmacology, 1984, Volume: 36, Issue:3

    The effects of a novel compound, 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (idebenone, CV-2619), on cerebral and renal vascular changes were examined in stroke-prone spontaneously hypertensive rats (SHRSP) and in rats with experimentally induced hypertension. CV-2619 (35 mg/kg/day, p.o.) significantly inhibited the onset of cerebrovascular lesions (stroke) and the elevation of blood pressure in SHRSP with mild hypertension. A higher dose (2 X 50 mg/kg/day, p.o.) clearly delayed the onset of both stroke and proteinuria without any effect on the blood pressure in SHRSP with severe hypertension. In DOCA-salt hypertensive rats, CV-2619 (2 X 5 or 2 X 25 mg/kg/day, p.o.) dose-dependently inhibited decreases in body weight and water balance and the development of cerebral and renal vascular changes. These results suggest that CV-2619 inhibits the development of stroke and renal vascular lesions in hypertensive rats.

    Topics: Animals; Benzoquinones; Blood Pressure; Body Weight; Brain; Cerebrovascular Disorders; Hypertension; Kidney; Male; Quinones; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Time Factors; Ubiquinone; Water-Electrolyte Balance

1984
[Effects of 2,3-dimethoxy-5-methyl-6-(10'-hydroxydecyl)-1,4-benzoquinone (CV-2619) on myocardial energy metabolism in the hypertrophied heart of spontaneously hypertensive rats].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 1982, Volume: 80, Issue:4

    Effects of CV-2619 (10 and 30 mg/kg/day, p.o.) or ubiquinone-10 (Q-10, 10 mg/kg/day, p.o.) treatment for 5 weeks on systolic blood pressure (SBP) and myocardial energy metabolism were studied in spontaneously hypertensive rats of 20 weeks of age. The systolic blood pressure was about 205 mmHg at the start of the experiment, and a slight increase was noted thereafter in the control (vehicle) group. CV-2619, but not Q-10, inhibited the increase in the blood pressure. At 25 weeks of age, cardiac hypertrophy was noted to the same extent in either treated group. Myocardial contents of glycolytic intermediates (glycogen, glucose, pyruvate and lactate) and creatine phosphate (Cr-P), ATP, ADP, and AMP were not significantly influenced by CV-2619 or Q-10 treatment. CV-2619, however, significantly increased the energy charge, an index of myocardial energy state, with higher dose and lowered the lactate/pyruvate ratio with either dose. These results suggest that CV-2619 has a mild antihypertensive effect and improves the myocardial energy state in the hypertrophied heart during the sustained phase of hypertension in SHR rats.

    Topics: Animals; Benzoquinones; Blood Pressure; Body Weight; Cardiomegaly; Cyclic AMP; Electrocardiography; Energy Metabolism; Heart Rate; Heart Ventricles; Hypertension; Male; Myocardium; Organ Size; Phosphoric Acids; Proteins; Quinones; Rats; Rats, Inbred Strains; Ubiquinone

1982
Antihypertensive actions of isoprenoids.
    Clinical and experimental hypertension. Part A, Theory and practice, 1982, Volume: 4, Issue:1-2

    Specific features of antihypertensive action of two new isoprenoid compounds, i.e. 5-nicotinooxymethyl -gamma - tocopherylnicotinate (NNT) and decaprenoic ethylester (EDP) were studied in rats. NNT and EDP were very similar to each other in their pharmacological features as far as we studied. Both NNT and EDP did not affect blood pressure in normotensive animals but significantly reduced blood pressure in SHR and DOCA/salt hypertensive animals in the acute studies with single dosing of 1 to 10 mg/kg (p.o.). Their antihypertensive action was mild but long-lasting and cumulated by the repeated administration. The chronic administration of NNT and EDP at oral doses of 0.2 and 2 mg/kg once a day completely suppressed the development of hypertension in rats unilaterally nephrectomized and treated with DOCA/salt and in SHR which were unilaterally ureter-ligated to accelerate the progress of their genetic hypertension. The mechanism of their antihypertensive action remains to be solved.

    Topics: Animals; Antihypertensive Agents; Blood Pressure; Desoxycorticosterone; Hypertension; Male; Rats; Rats, Inbred Strains; Terpenes; Tocopherols; Ubiquinone; Vitamin E

1982
[Effects of 2,3-dimethoxy-5-methyl-6-(10'-hydroxydecyl)-1,4-benzoquinone (CV-2619) on adriamycin-induced ECG abnormalities and myocardial energy metabolism in spontaneously hypertensive rats].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 1982, Volume: 80, Issue:4

    Antidote actions of CV-2619 and ubiquinone-10 (Q-10) against adriamycin (ADM) cardiotoxicity were studied in spontaneously hypertensive rats. ADM (1 mg/kg/day, i.p.) elicited widening of the QRS complex in the ECG. The widening of the QRS complex was counteracted by a 10-day treatment with CV-2619 (10 and 30 mg/kg/day, p.o.) or Q-10 (10 mg/kg/day, p.o.), which was started on the 15th day of the ADM treatment. CV-2619 or Q-10, however, did not influence ADM-induced decrease in body and heart ventricular weights. Systemic hypotension caused by adriamycin was accelerated by CV-2619 or Q-10. The ADM treatment significantly decreased myocardial glycogen and glucose contents, while it did not affect the lactate content. Furthermore, ADM did not affect the myocardial content of adenine nucleotides, but significantly increased that of creatine phosphate. CV-2619 or Q-10 medication did not counteract changes in these contents by ADM. On the contrary, both agents decreased the lactate content and increased the phosphorylation potential, an index of myocardial energy state. In conclusion, CV-2619 might be as effective as Q-10 to protect the heart against ADM cardiotoxicity, and both test agents improved the myocardial energy state.

    Topics: Animals; Benzoquinones; Blood Pressure; Body Weight; Doxorubicin; Electrocardiography; Energy Metabolism; Heart Rate; Heart Ventricles; Hypertension; Male; Myocardium; Organ Size; Phosphoric Acids; Phosphorylation; Proteins; Quinones; Rats; Rats, Inbred Strains; Ubiquinone

1982
[Effect of recirculation on experimental cerebral ischemia. 3. Therapy].
    Fukuoka igaku zasshi = Hukuoka acta medica, 1982, Volume: 73, Issue:9

    Topics: Adenosine Triphosphate; Animals; Brain; Brain Ischemia; Carotid Arteries; Cerebrovascular Circulation; Dexamethasone; Glycerol; Hypertension; Lactates; Lactic Acid; Ligation; Male; Pyruvates; Pyruvic Acid; Rats; Rats, Inbred Strains; Ubiquinone

1982
Prospects for nutritional control of hypertension.
    Medical hypotheses, 1981, Volume: 7, Issue:3

    Sodium restriction is not the only nutritional measure likely to prove valuable in the treatment and prevention of hypertension. The hypotensive effects of central adrenergic stimulation can be promoted by supplementary tyrosine, insulin potentiation (as with GTF), and (possibly) high-dose pyridoxine. Insulin potentiators (GTF) and prostaglandin precursors (essential fatty acids) should have direct relaxant effects on vascular muscle. A high potassium, low sodium diet, coenzyme Q, and prevention of cadmium toxicity (as with dietary selenium) may act to offset renally-mediated pressor influences. Functional combinations of these measures might prove to be substantially effective, in which case they would offer considerable advantages over potentially toxic drug therapies.

    Topics: Amino Acids; Animals; Chromium; Diet, Sodium-Restricted; Dietary Carbohydrates; Dietary Proteins; Drug Therapy, Combination; Guinea Pigs; Humans; Hypertension; Nicotinic Acids; Organometallic Compounds; Potassium; Pyridoxine; Rats; Tyrosine; Ubiquinone

1981
Bioenergetics in clinical medicine. XVI. Reduction of hypertension in patients by therapy with coenzyme Q10.
    Research communications in chemical pathology and pharmacology, 1981, Volume: 31, Issue:1

    Six untreated hypertensive patients and ten on therapy, but having elevated blood pressures, were treated with coenzyme Q10(CoQ10); 14/16 patients showed reductions (p less than 0.05-less than 0.001) in systolic pressures; 11/16 showed reductions (p less than 0.05-less than 0.001) in diastolic pressure; 9/10 showed reductions of elevated pressures to a normal range. By impedance cardiography and electrocardiography, there were no changes in cardiac outputs, stroke volumes and Heather Indices except for a few patients with changes of doubtful biological significance. 3/16 patients had exceptionally low basal specific activities of the succinate dehydrogenase-coenzyme Q10 reductase in blood which increased to a normal range on treatment. A greater deficiency of CoQ10 in the vascular system than in blood is likely. We consider that (1) the mechanism of reduction of elevated blood pressures by CoQ10 is based upon normalization or autoregulation of peripheral resistance rather than cardiac regulation, and (2) that the therapeutic activity of CoQ10 is not pharmacodynamic, but results from a translational increase in levels of CoQ10-enzymes in vascular tissue during ca. 4-12 weeks.

    Topics: Blood Pressure; Cardiac Output; Humans; Hypertension; Stroke Volume; Ubiquinone

1981
[Usefulness of coenzyme Q10 in the treatment of hypertension].
    Polski tygodnik lekarski (Warsaw, Poland : 1960), 1981, Jul-06, Volume: 36, Issue:27

    Topics: Adult; Aged; Antihypertensive Agents; Blood Pressure; Drug Evaluation; Female; Humans; Hypertension; Male; Middle Aged; Ubiquinone

1981
Study of activities of the succinate dehydrogenase-coenzyme Q reductase in leucocytes of patients with controlled hypertension.
    Journal of medicine, 1978, Volume: 9, Issue:2

    Topics: Adrenergic beta-Antagonists; Adult; Aged; Antihypertensive Agents; Female; Humans; Hypertension; Leukocytes; Male; Middle Aged; NADH, NADPH Oxidoreductases; Quinone Reductases; Sodium; Succinate Dehydrogenase; Ubiquinone

1978
[Antihypertensive effects of coenzyme Q10 in essential hypertension--in relation to the renin-aldosterone system].
    Horumon to rinsho. Clinical endocrinology, 1977, Volume: 25, Issue:9

    Topics: Adult; Aged; Aldosterone; Antihypertensive Agents; Female; Humans; Hypertension; Male; Middle Aged; Renin; Ubiquinone

1977
Bioenergetics in clinical medicine. Studies on coenzyme Q10 and essential hypertension.
    Research communications in chemical pathology and pharmacology, 1975, Volume: 11, Issue:2

    The specific activities (S.A.) of the succinate dehydrogenase-coenzyme Q10 (CoQ10) reductase of a control group of 65 Japanese adults and 59 patients having essential hypertension were determined. The mean S.A. of the hypertensive group was significantly lower (p less than 0.001) and the mean % deficiency of enzyme activity was significantly higher (p less than 0.001) than the values for the control group. These data on Japanese in Osaka agree with data on Americans in Dallas. Some patients showed no CoQ10-deficiency, and others showed definite deficiencies. Emphasizing the CoQ10-enzyme for patient selection, CoQ10 was administered to hypertensive patients. Four individuals showed significant but partial reductions of blood pressure. Monitoring the CoQ10-enzyme before, during, and after administration of CoQ10 indicated responses. The maintenance of high blood pressure could be primarily due to contraction of the arterial wall. Contraction or relaxation of an arterial wall is dependent upon bioenergetics, which also provide the energy for biosynthesis of angiotensin II, renin, aldosterone, and the energy for sodium and potassium transport. A clinical benefit from administration of CoQ10 to patients with essential hypertension could be based upon correcting a deficiency in bioenergetics, and point to possible combination treatments with a form of CoQ and anti-hypertensive drugs.

    Topics: Adult; Aged; Female; Humans; Hypertension; Japan; Leukocyte Count; Male; Middle Aged; Oxidoreductases; Succinate Dehydrogenase; Ubiquinone

1975
[Effects of coenzyme Q10 on the blood pressure and renal renin content in spontaneously hypertensive rats].
    Igaku kenkyu. Acta medica, 1975, Volume: 45, Issue:5

    Topics: Animals; Blood Pressure; Female; Hypertension; Kidney; Rats; Renin; Ubiquinone

1975
Deficiency of activity of succinate dehydrogenase-coenzyme Q10 reductase in leucoytes from patiens with essential hypertension.
    International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 1974, Volume: 44, Issue:3

    Topics: Adult; Aged; Aortic Valve Insufficiency; Electron Transport; Female; Humans; Hypertension; Leukocytes; Male; Middle Aged; Mitochondria; NADH, NADPH Oxidoreductases; Oxidative Phosphorylation; Succinate Dehydrogenase; Ubiquinone

1974
Effect of coenzyme Q10 on experimental hypertension in rats and dogs.
    The Journal of pharmacology and experimental therapeutics, 1974, Volume: 189, Issue:1

    Topics: Adrenal Glands; Adrenalectomy; Animals; Antihypertensive Agents; Blood Pressure; Corticosterone; Dogs; Heart Rate; Hypertension; Hypertension, Renal; Kidney; Male; Nephrectomy; Rats; Renal Artery; Time Factors; Ubiquinone

1974
Deficiency of coenzyme Q10 in hypertensive rats and reduction of deficiency by treatment with coenzyme Q10.
    Biochemical and biophysical research communications, 1974, Jun-04, Volume: 58, Issue:3

    Topics: Animals; Desoxycorticosterone; Heart; Hypertension; Kidney; Leukocytes; Liver; Myocardium; Nephrectomy; Organ Size; Organ Specificity; Succinate Dehydrogenase; Ubiquinone

1974
[Effect of coenzyme Q 10 on experimental hypertensive cardiovascular disease in desoxycorticosterone acetate-saline loaded rats].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 1972, Volume: 68, Issue:4

    Topics: Adrenal Glands; Animals; Body Weight; Desoxycorticosterone; Female; Hypertension; Kidney; Liver; Lung; Myocardium; Organ Size; Rats; Sodium Chloride; Ubiquinone; Water-Electrolyte Balance

1972