ubiquinone-9 and Chemical-and-Drug-Induced-Liver-Injury

ubiquinone-9 has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 2 studies

Other Studies

2 other study(ies) available for ubiquinone-9 and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Mechanisms of protection by S-allylmercaptocysteine against acetaminophen-induced liver injury in mice.
    Japanese journal of pharmacology, 1998, Volume: 78, Issue:2

    S-Allylmercaptocysteine (SAMC), one of the water-soluble organosulfur compounds in ethanol extracts of garlic (Allium sativum L.), has been shown to protect mice against acetaminophen (APAP)-induced liver injury. In this study, we examined the mechanisms underlying this hepatoprotection. SAMC (100 mg/kg, p.o.) given 2 and 24 hr before APAP administration (500 mg/kg, p.o.) suppressed the plasma alanine aminotransferase activity increases 3 to 12 hr after APAP administration significantly. The hepatic reduced glutathione levels of vehicle-pretreated mice decreased 1 to 6 hr after APAP administration, but SAMC pretreatment suppressed the reductions 1 to 6 hr after APAP administration significantly. These inhibitory effects of SAMC were dose-dependent (50-200 mg/kg) 6 hr after APAP administration. As SAMC pretreatment (50-200 mg/kg) suppressed hepatic cytochrome P450 2E1-dependent N-nitrosodimethylamine demethylase activity significantly in a dose-dependent manner, we suggest that one of its protective mechanisms is inhibition of cytochrome P450 2E1 activity. SAMC pretreatment also suppressed the increase in hepatic lipid peroxidation and the decrease in hepatic reduced coenzyme Q9 (CoQ9H2) levels 6 hr after APAP administration. The hepatic CoQ9H2 content of the SAMC pretreatment group was maintained at the normal level. Therefore, we suggest that another hepatoprotective mechanism of SAMC may be attributable to its antioxidant activity.

    Topics: Acetaminophen; Alanine Transaminase; Animals; Chemical and Drug Induced Liver Injury; Coenzymes; Cysteine; Cytochrome P-450 CYP2E1; Glucuronosyltransferase; Glutathione; Lipid Peroxidation; Liver; Liver Diseases; Male; Mice; Proteins; Sulfhydryl Compounds; Sulfotransferases; Ubiquinone; Vitamin E

1998
Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat.
    Molecular aspects of medicine, 1997, Volume: 18 Suppl

    To confirm whether or not cytosolic NADPH-UQ reductase is involved in the recycling of cellular ubiquinol (UQH2) consumed during lipid peroxidation, the effect of a UQ-10 supplement on the NADPH-UQ reductase and cellular defense against oxidative damage in rat livers was investigated. Supplements of UQ-10 for 14 days enhanced the levels of UQH2-10 and NADPH-UQ reductase in rat livers without any appreciable changes in other antioxidant contents and related enzyme activities. However, the injection of carbon tetrachloride (CCl4) into the rats induced lipid peroxidation and decreased the cellular UQH2-10 contents (and increased equivalent amounts of UQ-10), as well as decreasing the ascorbic acid, reduced glutathione (GSH) and alpha-tocopherol contents of the rat livers. Administration of the UQ-10 supplement prior to the CCl4 treatment spared alpha-tocopherol (but not GSH or ascorbic acid), inhibited lipid peroxidation, and thus improved CCl4-induced hepatitis. These findings support the notion that NADPH-UQ reductase in cytosol is the enzyme responsible for the regeneration of UQH2 from UQ formed by lipid peroxidation in cells.

    Topics: Animals; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Cytosol; Liver; Male; Microsomes, Liver; Mitochondria, Liver; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Rats; Rats, Wistar; Specific Pathogen-Free Organisms; Ubiquinone

1997