ubiquinone-8 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for ubiquinone-8 and Disease-Models--Animal
Article | Year |
---|---|
A Personalized Model of
Clinical studies have identified patients with nephrotic syndrome caused by mutations in genes involved in the biosynthesis of coenzyme Q Topics: Alkyl and Aryl Transferases; Alleles; Animals; Autophagy; Cell Line; Cells, Cultured; Disease Models, Animal; Gene Silencing; Humans; Mitochondria; Mitophagy; Nephrotic Syndrome; Organisms, Genetically Modified; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Ubiquinone; Vitamins | 2017 |
Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.
The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Topics: Animals; Behavior, Animal; Cerebellar Ataxia; Cerebellum; Chlorocebus aethiops; COS Cells; Disease Models, Animal; Exercise Tolerance; Female; Genetic Predisposition to Disease; HEK293 Cells; Humans; Lipid Metabolism; Male; Maze Learning; Mice, Inbred C57BL; Mice, Knockout; Mitochondrial Proteins; Models, Molecular; Motor Activity; Muscle Strength; Muscle, Skeletal; Phenotype; Protein Binding; Protein Conformation; Proteomics; Recognition, Psychology; Rotarod Performance Test; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Seizures; Structure-Activity Relationship; Time Factors; Transfection; Ubiquinone | 2016 |