ubiquinone-8 has been researched along with Cerebellar-Ataxia* in 5 studies
5 other study(ies) available for ubiquinone-8 and Cerebellar-Ataxia
Article | Year |
---|---|
Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients.
To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10).. Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data.. Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%.. This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263. Topics: Adolescent; Adult; Aged; Cerebellar Ataxia; Child; Child, Preschool; Cohort Studies; Cross-Sectional Studies; Female; Genetic Variation; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Mutation; Protein Structure, Secondary; Ubiquinone; Young Adult | 2020 |
Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.
The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Topics: Animals; Behavior, Animal; Cerebellar Ataxia; Cerebellum; Chlorocebus aethiops; COS Cells; Disease Models, Animal; Exercise Tolerance; Female; Genetic Predisposition to Disease; HEK293 Cells; Humans; Lipid Metabolism; Male; Maze Learning; Mice, Inbred C57BL; Mice, Knockout; Mitochondrial Proteins; Models, Molecular; Motor Activity; Muscle Strength; Muscle, Skeletal; Phenotype; Protein Binding; Protein Conformation; Proteomics; Recognition, Psychology; Rotarod Performance Test; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Seizures; Structure-Activity Relationship; Time Factors; Transfection; Ubiquinone | 2016 |
The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children.
Childhood cerebellar ataxias, and particularly congenital ataxias, are heterogeneous disorders and several remain undefined. We performed a muscle biopsy in patients with congenital ataxia and children with later onset undefined ataxia having neuroimaging evidence of cerebellar atrophy. Significant reduced levels of Coenzyme Q10 (COQ10) were found in the skeletal muscle of 9 out of 34 patients that were consecutively screened. A mutation in the ADCK3/Coq8 gene (R347X) was identified in a female patient with ataxia, seizures and markedly reduced COQ10 levels. In a 2.5-years-old male patient with non syndromic congenital ataxia and autophagic vacuoles in the muscle biopsy we identified a homozygous nonsense mutation R111X mutation in SIL1 gene, leading to early diagnosis of Marinesco-Sjogren syndrome. We think that muscle biopsy is a valuable procedure to improve diagnostic assesement in children with congenital ataxia or other undefined forms of later onset childhood ataxia associated to cerebellar atrophy at MRI. Topics: Biopsy; Cerebellar Ataxia; Child, Preschool; Chromatography, High Pressure Liquid; DNA Mutational Analysis; Female; Guanine Nucleotide Exchange Factors; Humans; Male; Muscle, Skeletal; Mutation; Ubiquinone | 2012 |
CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures.
Coenzyme Q(10) (CoQ(10)) plays a pivotal role in oxidative phosphorylation (OXPHOS) in that it distributes electrons between the various dehydrogenases and the cytochrome segments of the respiratory chain. Primary coenzyme Q(10) deficiency represents a clinically heterogeneous condition suggestive of genetic heterogeneity, and several disease genes have been previously identified. The CABC1 gene, also called COQ8 or ADCK3, is the human homolog of the yeast ABC1/COQ8 gene, one of the numerous genes involved in the ubiquinone biosynthesis pathway. The exact function of the Abc1/Coq8 protein is as yet unknown, but this protein is classified as a putative protein kinase. We report here CABC1 gene mutations in four ubiquinone-deficient patients in three distinct families. These patients presented a similar progressive neurological disorder with cerebellar atrophy and seizures. In all cases, enzymological studies pointed to ubiquinone deficiency. CoQ(10) deficiency was confirmed by decreased content of ubiquinone in muscle. Various missense mutations (R213W, G272V, G272D, and E551K) modifying highly conserved amino acids of the protein and a 1 bp frameshift insertion c.[1812_1813insG] were identified. The missense mutations were introduced into the yeast ABC1/COQ8 gene and expressed in a Saccharomyces cerevisiae strain in which the ABC1/COQ8 gene was deleted. All the missense mutations resulted in a respiratory phenotype with no or decreased growth on glycerol medium and a severe reduction in ubiquinone synthesis, demonstrating that these mutations alter the protein function. Topics: Adolescent; Adult; Amino Acid Sequence; Benzoquinones; Brain; Cerebellar Ataxia; Female; Haplotypes; Humans; Magnetic Resonance Imaging; Male; Molecular Sequence Data; Muscle, Skeletal; Mutation, Missense; Pedigree; Seizures; Ubiquinone | 2008 |
ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.
Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production. Topics: Amino Acid Sequence; Brain; Cerebellar Ataxia; Coenzymes; Female; Genes, Recessive; Humans; Magnetic Resonance Imaging; Male; Molecular Sequence Data; Mutation; Pedigree; Phosphotransferases; Sequence Analysis, DNA; Ubiquinone; Yeasts | 2008 |