ubiquinone-6 and Nephrotic-Syndrome

ubiquinone-6 has been researched along with Nephrotic-Syndrome* in 8 studies

Other Studies

8 other study(ies) available for ubiquinone-6 and Nephrotic-Syndrome

ArticleYear
Effects of CoQ10 Replacement Therapy on the Audiological Characteristics of Pediatric Patients with
    BioMed research international, 2022, Volume: 2022

    Primary coenzyme Q10 (CoQ10) deficiency refers to a group of mitochondrial cytopathies caused by genetic defects in CoQ10 biosynthesis. Primary coenzyme Q10 deficiency-6 (COQ10D6) is an autosomal recessive disorder attributable to biallelic

    Topics: Ataxia; Deafness; Hearing Loss, Sensorineural; Humans; Mitochondrial Diseases; Muscle Weakness; Nephrotic Syndrome; Steroids; Ubiquinone

2022
Primary coenzyme Q10 Deficiency-6 (COQ10D6): Two siblings with variable expressivity of the renal phenotype.
    European journal of medical genetics, 2020, Volume: 63, Issue:1

    Primary coenzyme Q10 deficiency-6 (COQ10D6) is a rare autosomal recessive disorder caused by COQ6 mutations. The main clinical manifestations are infantile progressive nephrotic syndrome (NS) leading to end-stage renal disease and sensorineural deafness. A 7-year-old girl was diagnosed with steroid-resistant NS (SRNS) and an audiological work-up revealed bilateral sensorineural deafness. A renal biopsy demonstrated focal segmental glomerulosclerosis. Despite immunosuppressive therapy, her serum levels of creatinine increased and haemodialysis was indicated within 1 year after the diagnosis. Living-donor kidney transplantation was performed in the eighth month of haemodialysis. A diagnostic custom-designed panel-gene test including 30 genes for NS revealed homozygous c.1058C > A [rs397514479] in exon nine of COQ6. Her older brother, who had sensorineural hearing loss with no renal or neurological involvement, had the same mutation in homozygous form. COQ6 mutations should be considered not only in patients with SRNS with sensorineural hearing loss but also in patients with isolated sensorineural hearing loss with a family history of NS. The reported p.His174 variant of COQ8B was suggested to be a risk factor for secondary CoQ deficiency, while p.Arg174 appeared to improve the condition in a yeast model. Family segregation and the co-occurrence of biallelic p.Arg174 of COQ8B in a brother with hearing loss implied that the interaction of the altered COQ8B with the mutant COQ6 alleviated the symptoms in this family. CoQ10 replacement therapy should be initiated for these patients, as primary CoQ10 deficiency is considered the only known treatable mitochondrial disease.

    Topics: Ataxia; Child; Female; Homozygote; Humans; Kidney; Kidney Failure, Chronic; Male; Mitochondrial Diseases; Muscle Weakness; Mutation; Nephrotic Syndrome; Phenotype; Siblings; Ubiquinone

2020
Pair analysis and custom array CGH can detect a small copy number variation in COQ6 gene.
    Clinical and experimental nephrology, 2019, Volume: 23, Issue:5

    Recently, comprehensive genetic approaches for steroid-resistant nephrotic syndrome (SRNS) using next-generation sequencing (NGS) have been established, but causative gene mutations could not be detected in almost 70% of SRNS patients. Main reason for the low variant detection rate is that most of them are SRNS caused not by genetic but by immunological factors. But some of them are probably because of the difficulty of detecting copy number variations (CNVs) in causative genes by NGS.. In this study, we performed two analytical methods of NGS data-dependent pair analysis and custom array comparative genomic hybridization (aCGH) in addition to NGS analysis in an infantile nephrotic syndrome case.. We detected only one known pathogenic heterozygous missense mutation in exon 7 of COQ6 c.782C > T, p.(Pro261Leu) by NGS. With pair analysis, heterozygous exon 1-2 deletion was suspected and was confirmed by custom aCGH. As a result, a small CNV was successfully detected in the COQ6 gene. Because we could detect variants in COQ6 and could start treatment by coenzyme Q10 (CoQ10) in his very early stage of SRNS, the patient achieved complete remission.. These relatively novel methods should be adopted in cases with negative results in gene tests by NGS analysis. Especially, in cases with CoQ10 deficiency, it is possible to delay initiating dialysis by starting treatment at their early stages.

    Topics: Comparative Genomic Hybridization; DNA Copy Number Variations; Humans; Infant; Kidney; Male; Nephrotic Syndrome; Sequence Analysis, DNA; Ubiquinone

2019
Gene mutation analysis in 12 Chinese children with congenital nephrotic syndrome.
    BMC nephrology, 2018, 12-29, Volume: 19, Issue:1

    Congenital nephrotic syndrome (CNS) is characterised by increased proteinuria, hypoproteinemia, and edema beginning in the first 3 months of life. Recently, molecular genetic studies have identified several genes involved in the pathogenesis of CNS. A systematic investigation of the genes for CNS in China has never been performed; therefore, we conducted a mutational analysis in 12 children with CNS,with the children coming from 10 provinces and autonomous regions in China.. Twelve children with CNS were enrolled from 2009 to 2016. A mutational analysis was performed in six children by Sanger sequencing in eight genes (NPHS1, NPHS2, PLCE1, WT1, LAMB2, LMXIB, COQ6 and COQ2) before 2014, and whole-exome sequencing was used from 2014 to 2016 in another six children. Significant variants that were detected by next generation sequencing were confirmed by conventional Sanger sequencing in the patients' families.. Of the 12 children, eight patients had a compound heterozygous NPHS1 mutation, one patient had a de novo mutation in the WT1 gene, and another patient with extrarenal symptoms had a homozygous mutation in the COQ6 gene. No mutations were detected in genes NPHS2, PLCE1, LAMB2, LMXIB, and COQ2 in the 12 patients.. This study demonstrates that the majority of CNS cases (67%, 8/12 patients) are caused by genetic defects, and the NPHS1 mutation is the most common cause of CNS in Chinese patients. A mutational analysis of NPHS1 should be recommended in Chinese patients with CNS in all exons of NPHS1 and in the intron-exon boundaries.

    Topics: Alkyl and Aryl Transferases; Asian People; China; DNA Mutational Analysis; Exome Sequencing; Female; Heterozygote; Homozygote; Humans; Infant; Infant, Newborn; Intracellular Signaling Peptides and Proteins; Laminin; LIM-Homeodomain Proteins; Male; Membrane Proteins; Nephrotic Syndrome; Phosphoinositide Phospholipase C; Transcription Factors; Ubiquinone; WT1 Proteins

2018
A Personalized Model of
    Journal of the American Society of Nephrology : JASN, 2017, Volume: 28, Issue:9

    Clinical studies have identified patients with nephrotic syndrome caused by mutations in genes involved in the biosynthesis of coenzyme Q

    Topics: Alkyl and Aryl Transferases; Alleles; Animals; Autophagy; Cell Line; Cells, Cultured; Disease Models, Animal; Gene Silencing; Humans; Mitochondria; Mitophagy; Nephrotic Syndrome; Organisms, Genetically Modified; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Ubiquinone; Vitamins

2017
Further phenotypic heterogeneity of CoQ10 deficiency associated with steroid resistant nephrotic syndrome and novel COQ2 and COQ6 variants.
    Clinical genetics, 2017, Volume: 92, Issue:2

    Topics: Ataxia; Computer Simulation; DNA Mutational Analysis; Female; Humans; Male; Mitochondrial Diseases; Muscle Weakness; Mutation; Nephrotic Syndrome; Pedigree; Ubiquinone

2017
ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption.
    The Journal of clinical investigation, 2013, Volume: 123, Issue:12

    Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.

    Topics: Adolescent; Adrenal Cortex Hormones; Amino Acid Sequence; Animals; Cells, Cultured; Child; Consanguinity; Conserved Sequence; Disease Models, Animal; DNA Mutational Analysis; Drosophila Proteins; Drug Resistance; Exome; Fibroblasts; Gene Knockdown Techniques; Humans; Mitochondria; Molecular Sequence Data; Mutation; Nephrotic Syndrome; Podocytes; Protein Kinases; Rats; Sequence Alignment; Sequence Homology, Amino Acid; Ubiquinone; Young Adult; Zebrafish; Zebrafish Proteins

2013
COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness.
    The Journal of clinical investigation, 2011, Volume: 121, Issue:5

    Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.

    Topics: Animals; Child; Child, Preschool; Chlorocebus aethiops; COS Cells; Hearing Loss, Sensorineural; HeLa Cells; Homozygote; Humans; Infant; Infant, Newborn; Intracellular Signaling Peptides and Proteins; Kidney Glomerulus; Laminin; Membrane Proteins; Mutation; Nephrotic Syndrome; Phenotype; Podocytes; Rats; Ubiquinone; WT1 Proteins; Zebrafish

2011