ubiquinol has been researched along with Colonic-Neoplasms* in 2 studies
2 other study(ies) available for ubiquinol and Colonic-Neoplasms
Article | Year |
---|---|
Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.
Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice.. Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue.. VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue. Topics: Adenocarcinoma; Animals; Antioxidants; Colonic Neoplasms; Fatigue; Female; Mice; Motor Activity; Muscle, Skeletal; Neoplasms, Experimental; Oxidative Stress; Ubiquinone | 2015 |
Ubiquinol and the papaverine derivative caroverine prevent the expression of tumour- promoting factors in adenoma and carcinoma colon cancer cells induced by dietary fat.
High consumption of dietary fat promotes colon carcinogenesis. While this effect is well known the underlying mechanism is not understood. Fatty acid hydroperoxides (LOOH) arise from unsaturated fatty acids in the presence of oxygen and elevated temperature during food processing. An approach was made starting from the assumption that LOOH are present in dietary fats as a result of boiling. LOOH undergoes homolytic cleavage in the presence of iron. We studied their effects on gene expression in colorectal tumour cells using linoleic acid hydroperoxide (LOOH) as model compound. Addition to the medium of LT97 adenoma and SW480 carcinoma cells enhanced the production of hydrogen peroxide. Both cell lines were observed to increase VEGF and COX-II expression based on mRNA. Expression of VEGF was inhibited by caroverine and ubiquinon. Topics: Adenoma; Carcinoma; Colonic Neoplasms; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dietary Fats; Gene Expression Regulation, Neoplastic; Humans; Linoleic Acids; Lipid Peroxides; Organic Chemicals; Pyrazoles; Quinoxalines; Sulfonamides; Tumor Cells, Cultured; Ubiquinone; Vascular Endothelial Growth Factor A | 2005 |