u-75302 has been researched along with Hyperplasia* in 2 studies
2 other study(ies) available for u-75302 and Hyperplasia
Article | Year |
---|---|
BLTR1 in Monocytes Emerges as a Therapeutic Target For Vascular Inflammation With a Subsequent Intimal Hyperplasia in a Murine Wire-Injured Femoral Artery.
Given the importance of high-mobility group box 1 (HMGB1) and 5-lipoxygenase (5-LO) signaling in vascular inflammation, we investigated the role of leukotriene signaling in monocytes on monocyte-to-macrophage differentiation (MMD) induced by HMGB1, and on vascular inflammation and subsequent intimal hyperplasia in a mouse model of wire-injured femoral artery. In cultured primary bone marrow-derived cells (BMDCs) stimulated with HMGB1, the number of cells with macrophage-like morphology was markedly increased in association with an increased expression of CD11b/Mac-1, which were attenuated in cells pre-treated with Zileuton, a 5-LO inhibitor as well as in 5-LO-deficient BMDCs. Of various leukotriene receptor inhibitors examined, which included leukotriene B4 receptors (BLTRs) and cysteinyl leukotriene receptors (cysLTRs), the BLTR1 inhibitor (U75302) exclusively suppressed MMD induction by HMGB1. The importance of BLTR1 in HMGB1-induced MMD was also observed in BMDCs isolated from BLTR1-deficient mice and BMDCs transfected with BLTR1 siRNA. Although leukotriene B4 (LTB4) had minimal direct effects on MMD in control and 5-LO-deficient BMDCs, MMD attenuation by HMGB1 in 5-LO-deficient BMDCs was significantly reversed by exogenous LTB4, but not in BLTR1-deficient BMDCs, suggesting that LTB4/BLTR1-mediated priming of monocytes is a prerequisite of HMGB1-induced MMD. Topics: Animals; Fatty Alcohols; Femoral Artery; Glycols; Hyperplasia; Macrophages; Mice; Mice, Knockout; Monocytes; Receptors, Leukotriene B4; Vascular Remodeling; Vascular System Injuries; Vasculitis | 2018 |
Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia.
Leukotriene B(4) (LTB(4)), a potent leukocyte chemoattractant derived from the 5-lipoxygenase metabolism of arachidonic acid, exerts its action by means of specific cell surface receptors, denoted BLT(1) and BLT(2). In this study, BLT(1) receptor proteins were detected in human carotid artery atherosclerotic plaques, colocalizing with markers for macrophages, endothelial cells, and vascular smooth muscle cells (SMC). Challenge of human coronary artery SMC with either LTB(4) or U75302, a partial agonist that is selective for the BLT(1) receptor, induced an approximately 4-fold increase of whole-cell currents by using the patch-clamp technique, indicating that these cells express functional BLT(1) receptors. LTB(4) induced migration and proliferation of SMC in vitro, and treatment with the BLT receptor antagonist BIIL 284 (10 mg/kg, once daily) for 14 days after carotid artery balloon injury in vivo inhibited intimal hyperplasia in rats. In the latter model, SMC derived from the intima exhibited increased levels of BLT(1) receptor mRNA compared with medial SMC. BLT receptor up-regulation in the intima in vivo, as well as that induced by IL-1beta in vitro, were prevented by transfection with a dominant-negative form of Ikappa kinase beta carried by adenovirus, indicating that BLT(1) receptor expression depends on NF-kappaBeta. These results show that LTB(4) activates functional BLT(1) receptors on vascular SMC, inducing chemotaxis and proliferation, and that BLT(1) receptors were up-regulated through an Ikappa kinase beta/NF-kappaB-dependent pathway. Inhibition of LTB(4)/BLT(1) signaling during the response to vascular injury reduced intimal hyperplasia, suggesting this pathway as a possible target for therapy. Topics: Amidines; Analysis of Variance; Animals; Atherosclerosis; Blotting, Western; Carbamates; Carotid Artery Injuries; Cell Movement; Electrophysiology; Fatty Alcohols; Glycols; Humans; Hyperplasia; Leukotriene B4; Male; Muscle, Smooth, Vascular; NF-kappa B; Patch-Clamp Techniques; Polymerase Chain Reaction; Purinergic P2 Receptor Agonists; Purinergic P2 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Leukotriene B4; Receptors, Purinergic P2; Signal Transduction; Tunica Intima; Up-Regulation | 2005 |