u-75302 has been researched along with Disease-Models--Animal* in 7 studies
7 other study(ies) available for u-75302 and Disease-Models--Animal
Article | Year |
---|---|
Resolvin E1/E2 ameliorate lipopolysaccharide-induced depression-like behaviors via ChemR23.
Resolvins are bioactive lipid mediators that are generated from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). We recently demonstrated that the DHA-derived resolvins D1 and D2 exert antidepressant effects. However, whether the EPA-derived resolvins E1 (RvE1) and E2 (RvE2) produce antidepressant effects is not clear.. We examined the antidepressant effects of RvE1/RvE2 in a murine lipopolysaccharide (LPS)-induced depression model using the tail suspension and forced swim tests. RvE1/RvE2 reportedly possesses both chemerin receptor ChemR23 agonistic activity and leukotriene B. Intracerebroventricular infusions of RvE1 (1 ng)/RvE2 (10 ng) produced significant antidepressant effects. An intracerebroventricular infusion of chemerin (500 ng), but not U75302 (a BLT1 antagonist; 10 or 50 ng), produced antidepressant effects. Intraperitoneal rapamycin (an mTORC1 inhibitor; 10 mg/kg) blocked the antidepressant effect of intracerebroventricular RvE1. Bilateral intra-mPFC and intra-DG infusions of RvE1 (50 pg/side) exerted antidepressant effects.. The results of this study demonstrate that (1) RvE1/RvE2 produce antidepressant effects likely via ChemR23, (2) mTORC1 signaling mediates the antidepressant effect of RvE1, and (3) mPFC and DG are the key brain regions involved in these actions. RvE1/RvE2 and their receptors may be promising targets for the development of novel antidepressants. Topics: Analysis of Variance; Animals; Antidepressive Agents; Brain; Depressive Disorder; Disease Models, Animal; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fatty Alcohols; Glycols; Hindlimb Suspension; Lipopolysaccharides; Locomotion; Male; Mice; Prefrontal Cortex; Signal Transduction; Sirolimus; Swimming; TOR Serine-Threonine Kinases | 2018 |
Dual role of leukotriene B4 receptor type 1 in experimental sepsis.
The controversial results from different studies suggested that leukocyte recruitment mediated by leukotriene B4 (LTB4) and its receptor might improve pathogen clearance, but might also aggravate organ injury during sepsis. The present study was performed to compare the effect of BLT1 ligand LTB4 and its antagonist U-75302 on the development of sepsis.. Sepsis in mice was induced by cecal ligation and puncture (CLP). The mice were allocated into sham group, CLP group, U-75302 group, and LTB4 group. In the latter three groups, CLP mice were treated by intraperitoneal saline, U-75302, and LTB4, respectively. Their effect on the progression of sepsis were compared by histopathologic tests, level of systemic cytokines, counts of immune cells and bacterial clearance, and survival rate.. The histopathologic tests showed that U-75302 attenuated lung injury, whereas LTB4 aggravated liver injury. LTB4 increased the plasma levels of interleukin-6, tumor necrosis factor-α, and U-75302 increased the level of plasma interleukin-10. LTB4 increased whereas U-75302 reduced the neutrophil numbers in the peritoneal lavage fluid. LTB4 also increased the number of peritoneal and splenic CD4(+) and CD8(+) T cells. Bacterial clearance in blood and peritoneal lavage fluid was significantly enhanced in the LTB4 group. Both U-75302 and LTB4 did not change the survival rate significantly compared with vehicle, but mortality in the LTB4 group was significantly higher than in the U-75302 group. Dose response analyses were also performed to compare the effect of U-75302 and LTB4 at different doses. Different doses of both agents did not influence the survival rate of CLP mice.. U-75302 attenuates sepsis-induced organ injury, whereas LTB4 increases the leukocyte recruitment toward infection site, but LTB4 showed a more lethal effect than U-75302 during polymicrobial sepsis. Topics: Animals; Disease Models, Animal; Fatty Alcohols; Glycols; Leukotriene B4; Mice, Inbred C57BL; Random Allocation; Receptors, Leukotriene B4; Sepsis | 2015 |
Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain.
Leukotrienes (LTs) belong to a large family of lipid mediators, termed eicosanoids, which are derived from arachidonic acids and released from the cell membrane by phospholipases. LTs are involved in the pathogenesis of inflammatory diseases, such as asthma, rheumatoid arthritis, and peripheral inflammatory pain. In the present study, we examined whether LTs were implicated in pathomechanism of neuropathic pain following peripheral nerve injury. Using the spared nerve injury (SNI) model in rats, we investigated the expression of LT synthases (5-lipoxygenase; 5-LO, Five lipoxygenase activating protein; FLAP, LTA4 hydrolase; LTA4h and LTC4 synthase; LTC4s) and receptors (BLT1, 2 and CysLT1, 2) mRNAs in the rat spinal cord. Semi-quantitative RT-PCR revealed that 5-LO, FLAP, LTC4s, BLT1, and CysLT1 mRNAs increased following SNI, but not CysLT2 mRNAs. Using double labeling analysis of in situ hybridization with immunohistochemistry, we observed that 5-LO, FLAP, and CysLT1 mRNAs were expressed in spinal microglia. LTA4h and LTC4s mRNAs were expressed in both spinal neurons and microglia. BLT1 mRNA was expressed in spinal neurons. The p38 mitogen-activated protein kinase inhibitor, but not MEK inhibitor, reduced the increase in 5-LO in spinal microglia. Continuous intrathecal administration of the 5-LO inhibitor or BLT1 and CysLT1 receptor antagonists suppressed mechanical allodynia induced by SNI. Our findings suggest that the increase of LT synthesis in spinal microglia produced via p38 MAPK plays a role in the generation of neuropathic pain. Topics: Animals; Arachidonate 5-Lipoxygenase; Benzoquinones; Chromones; Disease Models, Animal; Enzyme Inhibitors; Fatty Alcohols; Gene Expression Regulation, Enzymologic; Glycols; Hyperalgesia; Leukotriene Antagonists; Leukotrienes; Lipoxygenase Inhibitors; Male; Neuralgia; Pain Threshold; Peripheral Nervous System Diseases; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; Receptors, Leukotriene; Receptors, Leukotriene B4; RNA, Messenger; Spinal Cord; Time Factors | 2010 |
Leukotriene B4, administered via intracerebroventricular injection, attenuates the antigen-induced asthmatic response in sensitized guinea pigs.
Despite intensive studies focused on the pathophysiology of asthmatic inflammation, little is known about how cross-talk between neuroendocrine and immune systems regulates the inflammatory response during an asthmatic attack. We recently showed corresponding changes of cytokines and leukotriene B4 (LTB4) in brain and lung tissues of antigen-challenged asthmatic rats. Here, we investigated how LTB4 interacts with the neuroendocrine-immune system in regulating antigen-induced asthmatic responses in sensitized guinea pigs.. Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor) was given via intracerebroventricular injection (i.c.v.) 30 min before challenge. Airway contraction response was evaluated using Penh values before and after antigen challenge. The inflammatory response in lung tissue was evaluated 24 h after challenge. The LTB4 content of lung and brain homogenate preparations was detected by reversed phase high-performance liquid chromatography (RP-HPLC). Plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA kits.. Antigen challenge impaired pulmonary function and increased inflammatory cell infiltration in lung tissue. These responses could be significantly suppressed by LTB4, 30 ng i.c.v., in ovalbumin-sensitized guinea pigs. LTB4 content of lung and brain homogenates from antigen-challenged guinea pigs was significantly increased. In addition, administration of LTB4 via i.c.v. markedly increased CORT and ACTH level in plasma before antigen challenge, and there were further increases in CORT and ACTH levels in plasma after antigen challenge. U75302, 100 ng i.c.v., completely blocked the effects of LTB4. In addition, U75302, 100 ng via i.c.v. injection, markedly decreased LTB4 content in lung homogenates, but not in brain homogenates.. Increased LTB4 levels in brain during asthmatic attacks down-regulates airway contraction response and inflammation through the BLT1 receptor. Stimulation of the hypothalamic-pituitary-adrenal axis by LTB4 may result in an increase in systemic glucocorticoids which, in turn, would feed back to suppress the asthmatic response. Topics: Adrenocorticotropic Hormone; Analysis of Variance; Animals; Asthma; Bronchoalveolar Lavage Fluid; Chromatography, Reverse-Phase; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fatty Alcohols; Glycols; Guinea Pigs; Hydrocortisone; Injections, Intraventricular; Intracranial Hemorrhages; Leukotriene B4; Lung; Ovalbumin; Time Factors | 2010 |
Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats.
Basic and clinical studies suggest that hypothalamic-pituitary-adrenal (HPA) axis is the neuroendocrine-immune pathway that functionally regulates the chronic inflammatory disease including asthma. Our previous studies showed corresponding changes of cytokines and leukotriene B4 (LTB4) between brain and lung tissues in antigen-challenged asthmatic rats. Here, we investigated how the increased LTB4 level in brain interacts with HPA axis in regulating antigen-induced asthmatic response in sensitized rats.. Ovalbumin-sensitized rats were challenged by inhalation of antigen. Rats received vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor) was given via intracerebroventricular injection (i.c.v) 30 min before challenge. Lung resistance (RL) and dynamic lung compliance (Cdyn) were measured before and after antigen challenge. Inflammatory response in lung tissue was assessed 24 h after challenge. Expression of CRH mRNA and protein in hypothalamus were evaluated by RT-PCR and Western Blot, and plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using the ELISA kits.. Antigen challenge decreased pulmonary function and induced airway inflammation, evoked HPA axis response in sensitized rats. Administration of LTB4 via i.c.v markedly attenuated airway contraction and inflammation. Meanwhile, LTB4 via i.c.v markedly increased CORT and ACTH level in plasma before antigen challenge, and followed by further increases in CORT and ACTH levels in plasma after antigen challenge in sensitized rats. Expression of CRH mRNA and protein in hypothalamus were also significantly increased by LTB4 via i.c.v in sensitized rats after antigen challenge. These effect were completely blocked by pre-treatment with BLT1 receptor antagonist U75302 (10 ng), but not by BLT2 antagonist LY255283.. LTB4 administered via i.c.v down-regulates the airway contraction response and inflammation through activation of the HPA axis via its BLT1 receptor. This study expands our concept of the regulatory role of intracranial inflammatory mediators in inflammatory diseases including asthma. The favourable effects of LTB4 on the HPA axis may help to explain the phenomenon of self-relief after an asthmatic attack. Topics: Adrenocorticotropic Hormone; Airway Resistance; Animals; Asthma; Blotting, Western; Corticotropin-Releasing Hormone; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fatty Alcohols; Female; Glycols; Hypothalamo-Hypophyseal System; Hypothalamus; Inflammation Mediators; Injections, Intraventricular; Leukotriene B4; Lung; Lung Compliance; Male; Ovalbumin; Pituitary-Adrenal System; Pulmonary Eosinophilia; Rats; Rats, Sprague-Dawley; Receptors, Leukotriene B4; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2010 |
15-lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA.
We recently demonstrated that the T-helper type 1 (Th1) immune response plays an important role in the development of non-eosinophilic inflammation induced by airway exposure of an allergen plus double-stranded RNA (dsRNA). However, the role of lipoxygenase (LO) metabolites in the development of Th1 inflammation is poorly understood.. To evaluate the role of LO metabolites in the development of Th1 inflammation induced by sensitization with an allergen plus dsRNA.. A Th2-allergic inflammation mouse model was created by an intraperitoneal injection of lipopolysaccharide-depleted ovalbumin (OVA, 75 microg) and alum (2 mg) twice, and the Th1 model was created by intranasal application of OVA (75 microg) and synthetic dsRNA [10 microg of poly(I : C)] four times, followed by an intranasal challenge with 50 microg of OVA four times. The role of LO metabolites was evaluated using two approaches: a transgenic approach using 5-LO(-/-) and 15-LO(-/-) mice, and a pharmacological approach using inhibitors of cysteinyl leucotriene receptor-1 (cysLTR1), LTB4 receptor (BLT1), and 15-LO.. We found that the Th1-allergic inflammation induced by OVA+dsRNA sensitization was similar between 5-LO(-/-) and wild-type (WT) control mice, although Th2 inflammation induced by sensitization with OVA+alum was reduced in the former group. In addition, dsRNA-induced Th1 allergic inflammation, which is associated with down-regulation of 15-hydroxyeicosateraenoic acids production, was not affected by treatment with cysLTR1 or BLT1 inhibitors, whereas it was significantly lower in 12/15-LO(-/-) mice compared with WT control mice. Moreover, dsRNA-induced allergic inflammation and the recruitment of T cells following an allergen challenge were significantly inhibited by treatment with a specific 15-LO inhibitor (PD146176).. 15-LO metabolites appear to be important mediators in the development of Th1-allergic inflammation induced by sensitization with an allergen plus dsRNA. Our findings suggest that the 15-LO pathway is a novel therapeutic target for the treatment of virus-associated asthma characterized by Th1 inflammation. Topics: Acetates; Allergens; Alum Compounds; Animals; Arachidonate 15-Lipoxygenase; Arachidonate 5-Lipoxygenase; Cyclopropanes; Disease Models, Animal; Fatty Alcohols; Fluorenes; Glycols; Hypersensitivity; Inflammation; Leukotriene Antagonists; Lipoxygenase Inhibitors; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Ovalbumin; Poly I-C; Quinolines; Receptors, Leukotriene; Receptors, Leukotriene B4; RNA, Double-Stranded; Sulfides; Th1 Cells; Th2 Cells | 2009 |
Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice.
Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4'-[[pentanoyl (phenyl) amino]methyl]-1,1'-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid).. A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used.. Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose-response curve for compound A showed peaks at around 0.005-0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT(2) receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice.. Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor antagonists. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Animals; Antipruritics; Arachidonate 12-Lipoxygenase; Behavior, Animal; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Fatty Alcohols; Glycols; Male; Mice; Mice, Inbred ICR; Naltrexone; Pruritus; Receptors, Leukotriene B4; Signal Transduction; Tetrazoles; Video Recording | 2008 |