u-75302 has been researched along with Asthma* in 3 studies
3 other study(ies) available for u-75302 and Asthma
Article | Year |
---|---|
Leukotriene B4, administered via intracerebroventricular injection, attenuates the antigen-induced asthmatic response in sensitized guinea pigs.
Despite intensive studies focused on the pathophysiology of asthmatic inflammation, little is known about how cross-talk between neuroendocrine and immune systems regulates the inflammatory response during an asthmatic attack. We recently showed corresponding changes of cytokines and leukotriene B4 (LTB4) in brain and lung tissues of antigen-challenged asthmatic rats. Here, we investigated how LTB4 interacts with the neuroendocrine-immune system in regulating antigen-induced asthmatic responses in sensitized guinea pigs.. Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor) was given via intracerebroventricular injection (i.c.v.) 30 min before challenge. Airway contraction response was evaluated using Penh values before and after antigen challenge. The inflammatory response in lung tissue was evaluated 24 h after challenge. The LTB4 content of lung and brain homogenate preparations was detected by reversed phase high-performance liquid chromatography (RP-HPLC). Plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA kits.. Antigen challenge impaired pulmonary function and increased inflammatory cell infiltration in lung tissue. These responses could be significantly suppressed by LTB4, 30 ng i.c.v., in ovalbumin-sensitized guinea pigs. LTB4 content of lung and brain homogenates from antigen-challenged guinea pigs was significantly increased. In addition, administration of LTB4 via i.c.v. markedly increased CORT and ACTH level in plasma before antigen challenge, and there were further increases in CORT and ACTH levels in plasma after antigen challenge. U75302, 100 ng i.c.v., completely blocked the effects of LTB4. In addition, U75302, 100 ng via i.c.v. injection, markedly decreased LTB4 content in lung homogenates, but not in brain homogenates.. Increased LTB4 levels in brain during asthmatic attacks down-regulates airway contraction response and inflammation through the BLT1 receptor. Stimulation of the hypothalamic-pituitary-adrenal axis by LTB4 may result in an increase in systemic glucocorticoids which, in turn, would feed back to suppress the asthmatic response. Topics: Adrenocorticotropic Hormone; Analysis of Variance; Animals; Asthma; Bronchoalveolar Lavage Fluid; Chromatography, Reverse-Phase; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fatty Alcohols; Glycols; Guinea Pigs; Hydrocortisone; Injections, Intraventricular; Intracranial Hemorrhages; Leukotriene B4; Lung; Ovalbumin; Time Factors | 2010 |
Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats.
Basic and clinical studies suggest that hypothalamic-pituitary-adrenal (HPA) axis is the neuroendocrine-immune pathway that functionally regulates the chronic inflammatory disease including asthma. Our previous studies showed corresponding changes of cytokines and leukotriene B4 (LTB4) between brain and lung tissues in antigen-challenged asthmatic rats. Here, we investigated how the increased LTB4 level in brain interacts with HPA axis in regulating antigen-induced asthmatic response in sensitized rats.. Ovalbumin-sensitized rats were challenged by inhalation of antigen. Rats received vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor) was given via intracerebroventricular injection (i.c.v) 30 min before challenge. Lung resistance (RL) and dynamic lung compliance (Cdyn) were measured before and after antigen challenge. Inflammatory response in lung tissue was assessed 24 h after challenge. Expression of CRH mRNA and protein in hypothalamus were evaluated by RT-PCR and Western Blot, and plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using the ELISA kits.. Antigen challenge decreased pulmonary function and induced airway inflammation, evoked HPA axis response in sensitized rats. Administration of LTB4 via i.c.v markedly attenuated airway contraction and inflammation. Meanwhile, LTB4 via i.c.v markedly increased CORT and ACTH level in plasma before antigen challenge, and followed by further increases in CORT and ACTH levels in plasma after antigen challenge in sensitized rats. Expression of CRH mRNA and protein in hypothalamus were also significantly increased by LTB4 via i.c.v in sensitized rats after antigen challenge. These effect were completely blocked by pre-treatment with BLT1 receptor antagonist U75302 (10 ng), but not by BLT2 antagonist LY255283.. LTB4 administered via i.c.v down-regulates the airway contraction response and inflammation through activation of the HPA axis via its BLT1 receptor. This study expands our concept of the regulatory role of intracranial inflammatory mediators in inflammatory diseases including asthma. The favourable effects of LTB4 on the HPA axis may help to explain the phenomenon of self-relief after an asthmatic attack. Topics: Adrenocorticotropic Hormone; Airway Resistance; Animals; Asthma; Blotting, Western; Corticotropin-Releasing Hormone; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fatty Alcohols; Female; Glycols; Hypothalamo-Hypophyseal System; Hypothalamus; Inflammation Mediators; Injections, Intraventricular; Leukotriene B4; Lung; Lung Compliance; Male; Ovalbumin; Pituitary-Adrenal System; Pulmonary Eosinophilia; Rats; Rats, Sprague-Dawley; Receptors, Leukotriene B4; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2010 |
Biological activity of leukotriene B4 analogs: inhibition of guinea pig eosinophil migration in vitro by the 2,6-disubstituted pyridine analogs U-75,302 and U-75,485.
A "late phase" antigen-induced bronchoalveolar eosinophilia has been demonstrated in ovalbumin sensitized guinea pigs (1,2). This in vivo response to antigen inhalation can be inhibited by a 2,6-disubstituted pyridine analog of LTB4, U-75,302(2) (3). In the present study, the mechanism of the drug action was studied by assessing the activity of U-75,302 and a second analog, U-75,485 to displace [3H]-leukotriene B4 binding at the guinea pig eosinophil membrane, as well as their action as chemoattractants or inhibitors of the directional migration of guinea pig eosinophils in vitro. Radioligand competition experiments demonstrated that both analogs interacted strongly with the high affinity LTB4 binding sites on guinea pig eosinophil membrane. Both analogs are powerful chemoattractants for guinea pig eosinophils since they induced directional migration of guinea pig eosinophils when administered alone. In addition, when the cells were treated with either analog and their chemotaxis response was measured in response to a natural chemoattractant, both U-75,302 and U-75,485 at concentrations of 0.1 to 100 microM dose dependently inhibited the LTB4 induced chemotaxis response. The EC50s obtained for U-75,302 and U-75,485 as inhibitors of LTB4 induced guinea pig eosinophil chemotaxis were estimated to be 11.5 +/- 5.5 microM and 5.4 +/- 2.5 microM respectively. Under the same conditions, they had no significant effect upon eosinophil migration induced by zymosan activated plasma at concentrations below 100 microM. We suggest that the inhibition of antigen-induced eosinophil infiltration in guinea pig airway in vivo by U-75,302 or U-75,485 may be a result of partial antagonism or desensitization at the LTB4 receptor level of guinea pig eosinophils. Topics: Animals; Asthma; Binding, Competitive; Cell Movement; Chemotactic Factors; Dose-Response Relationship, Drug; Eosinophils; Fatty Alcohols; Female; Glycols; Guinea Pigs; Leukotriene B4; Pyridines; Receptors, Immunologic; Receptors, Leukotriene B4 | 1991 |