u-50488 has been researched along with Pruritus* in 8 studies
8 other study(ies) available for u-50488 and Pruritus
Article | Year |
---|---|
Pharmacological Characterization of a Novel Mouse Model of Cholestatic Pruritus.
Patients with cholestatic liver diseases, such as primary biliary cirrhosis, usually suffer from pruritus. However, the pathogenesis of cholestatic pruritus is unclear, and there is no current effective treatment for it. In order to find a treatment for the condition, an appropriate mouse model should be developed. Therefore, here, we established a surgically-induced mouse model of cholestatic pruritus. The bile duct was ligated in order to block bile secretion from the anterior, right, and left lobes, with the exception of the caudate lobe. Serum levels of total bile acid increased after bile duct ligation (BDL). The spontaneous hind paw scratching was also increased in BDL mice. Spontaneous scratching was reduced in BDL mice by naloxone (µ-opioid receptor antagonist), U-50,488H (κ-opioid receptor agonist), and clonidine (α2-adrenoceptor agonist). Azelastine (H Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic alpha-2 Receptor Agonists; Animals; Antipruritics; Bile Ducts; Cholestasis; Clonidine; Disease Models, Animal; Ligation; Liver; Male; Mice, Inbred ICR; Naloxone; Narcotic Antagonists; Pruritus; Receptors, Opioid, kappa | 2020 |
Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus.
The kappa opioid receptor (KOR) is involved in mediating pruritus; agonists targeting this receptor have been used to treat chronic intractable itch. Conversely, antagonists induce an itch response at the site of injection. As a G protein-coupled receptor (GPCR), the KOR has potential for signaling via G proteins and βarrestins, however, it is not clear which of these pathways are involved in the KOR modulation of itch. In this study asked whether the actions of KOR in pruritus involve βarrestins by using βarrestin2 knockout (βarr2-KO) mice as well as a recently described biased KOR agonist that biases receptor signaling toward G protein pathways over βarrestin2 recruitment. We find that the KOR antagonists nor-binaltorphimine (NorBNI) and 5'-guanidinonaltrindole (5'GNTI) induce acute pruritus in C57BL/6J mice, with reduced effects in KOR-KO mice. βArr2-KO mice display less of a response to KOR antagonist-induced itch compared to wild types, however no genotype differences are observed from chloroquine phosphate (CP)-induced itch, suggesting that the antagonists may utilize a KOR-βarrestin2 dependent mechanism. The KOR agonist U50,488H was equally effective in both WT and βarr2-KO mice in suppressing CP-induced itch. Furthermore, the G protein biased agonist, Isoquinolinone 2.1 was as effective as U50,488H in suppressing the itch response induced by KOR antagonist NorBNI or CP in C57BL/6J mice. Together these data suggest that the antipruritic effects of KOR agonists may not require βarrestins. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Arrestins; beta-Arrestins; Chloroquine; Disease Models, Animal; Dose-Response Relationship, Drug; Guanidines; Isoquinolines; Male; Mice, Inbred C57BL; Mice, Knockout; Morphinans; Motor Activity; Naltrexone; Pruritus; Receptors, Opioid, kappa | 2015 |
Involvement of peripheral mu opioid receptors in scratching behavior in mice.
Pruritus is a common adverse effect of opioid treatment. However, the mechanism by which pruritus is induced by opioid administration is unclear. In this study, we examined the effects of the intradermal injection of loperamide, a peripherally restricted opioid receptor agonist, on the itch sensation. When injected intradermally into the rostral part of the back in mice, loperamide elicited scratching behavior. We also examined the effects of the selective mu opioid receptor agonist [d-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin acetate (DAMGO), the selective delta opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE), and the selective kappa opioid receptor agonist U-50488H on scratching behavior in mice in order to determine which subtype is involved in opioid-induced pruritus. Following intradermal injection into the rostral part of the back in mice, DAMGO elicited scratching behavior, while DPDPE and U-50488H did not. This suggests that peripheral mu opioid activation elicits the itch sensation. Next, we focused on the treatment of opioid-induced itch sensation without central adverse effects. Naloxone methiodide is a peripherally restricted opioid receptor antagonist. In the present study, naloxone methiodide significantly suppressed scratching behavior induced by loperamide and DAMGO. These findings suggest that mu opioid receptors play a primary role in peripheral pruritus and that naloxone methiodide may represent a possible remedy for opioid-induced itching. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Antipruritics; Behavior, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Injections, Intradermal; Loperamide; Male; Mice; Mice, Inbred ICR; Naloxone; Opioid-Related Disorders; Pruritus; Quaternary Ammonium Compounds; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Skin | 2010 |
Inhibitory effects of TRK-820 on systemic skin scratching induced by morphine in rhesus monkeys.
The inhibitory effects of kappa-opioid receptor agonists on systemic skin scratching induced by the intravenous administration of morphine, a micro-opioid receptor agonist, were investigated in rhesus monkeys. Intravenous pretreatment with kappa-opioid receptor agonists, either TRK-820 at 0.25 and 0.5 microg/kg or U-50488H at 64 and 128 microg/kg, inhibited systemic skin scratching induced by morphine at 1 mg/kg, i.v. in a dose-dependent manner. By the intragastric route, apparent inhibitory effects on morphine-induced systemic skin scratching were evident following pretreatment with TRK-820 at 4 microg/kg but not with U-50488H from 512 to 2048 microg/kg. These results suggest that TRK-820 produces antipruritic effects on i.v. morphine-induced systemic skin scratching and is more readily absorbed intragastrically than is U-50488H, resulting in high bioavailability in the intragastric route. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Dose-Response Relationship, Drug; Macaca mulatta; Morphinans; Morphine; Motor Activity; Observation; Pruritus; Receptors, Opioid, kappa; Spiro Compounds; Statistics, Nonparametric | 2004 |
Activation of kappa-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys.
Pruritus (itch sensation) is the most common side effect associated with spinal administration of morphine given to humans for analgesia. A variety of agents have been proposed as antipruritics with poorly understood mechanisms and they are effective with variable success. kappa-Opioid agonists possess several actions that are opposite to micro -opioid agonists. We proposed to investigate the role of kappa-opioid receptors (KORs) in morphine-induced scratching and antinociception in monkeys. Scratching responses were counted by observers blinded to treatment. Antinociception was measured by a warm water (50 degrees C) tail-withdrawal assay. Pretreatment with low doses of trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide (U-50488H) (0.032-0.18 mg/kg s.c.), a selective KOR agonist, dose dependently suppressed the s.c. morphine dose-effect curve for scratching and potentiated s.c. morphine-induced antinociception. In addition, s.c. U-50488H attenuated i.t. morphine (10 and 32 micro g)-induced scratching while maintaining or enhancing i.t. morphine-induced antinociception. The combination of s.c. or i.t. morphine with low doses of U-50488H did not cause sedation. More importantly, pretreatment with 3.2 mg/kg nor-binaltorphimine, a selective KOR antagonist, blocked the effects of s.c. U-50488H on both s.c. and i.t. morphine-induced scratching. These results indicate that activation of KOR attenuates morphine-induced scratching without interfering with antinociception in monkeys. This mechanism-based finding provides functional evidence in support of the clinical potential of KOR agonists as antipruritics in the presence of MOR agonist-induced pruritus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Disease Models, Animal; Drug Interactions; Female; Injections, Spinal; Injections, Subcutaneous; Macaca mulatta; Male; Morphine; Naltrexone; Narcotic Antagonists; Pruritus; Receptors, Opioid, kappa | 2003 |
Norbinaltorphimine, a selective kappa-opioid receptor antagonist, induces an itch-associated response in mice.
We examined the possibility that scratching induced by norbinaltorphimine, a selective kappa-opioid receptor antagonist, is due to an itch sensation, using compound 48/80 as control pruritogenic agent. When norbinaltorphimine was injected s.c. into the rostral back, mice scratched the skin around the injection site with their hind paws. Although the intensity of the scratching could not be compared because the dose and injection route were different, the character and time course of the scratching behavior induced by compound 48/80 injected i.d. were similar to those with norbinaltorphimine. The scratching behavior induced by norbinaltorphimine was dose-dependently and significantly inhibited by pretreatment with chlorpheniramine. Compound 48/80-induced scratching was also dose-dependently and significantly inhibited by p.o. pretreatment with chlorpheniramine. The scratching behavior induced by norbinaltorphimine was dose-dependently and significantly inhibited by pretreatment with U-50,488H (trans-(+/-)-2-(3,4-dichlorophenyl)-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] acetamide methansulfonate), a kappa-opioid receptor agonist. Unexpectedly, the scratching behavior induced by compound 48/80 was also dose-dependently and significantly reduced by pretreatment with U-50,488H. These results suggest that the injection of norbinaltorphimine into the rostral back of the mouse elicited scratching, which may be an itch-associated response. Furthermore, the scratching behavior produced by norbinaltorphimine may be due in part to the release of histamine followed by antagonism of kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antipruritics; Behavior, Animal; Chlorpheniramine; Dose-Response Relationship, Drug; Histamine H1 Antagonists; Injections, Subcutaneous; Mice; Mice, Inbred ICR; Naltrexone; p-Methoxy-N-methylphenethylamine; Pruritus; Receptors, Opioid, kappa | 2001 |
Intracisternal injection of opioids induces itch-associated response through mu-opioid receptors in mice.
We examined whether opioids, especially morphine, would centrally elicit scratching in mice and determined some characteristics of the scratch-inducing action of opioids. When intracisternally (i.c.) injected, morphine (0.1-3 nmol/mouse) produced a dose-dependent increase in scratching of the face, but not of the ears, head and body trunk. When injected intradermally into the rostral part of the back, morphine (at most potent i.c. dose of 3 nmol/mouse or higher) did not increase the scratching of the injected site. Facial scratching of the mouse induced by i.c. injection of morphine (0.3 nmol/mouse) was almost abolished by distraction and by naloxone (1 mg/kg, s.c.). [D-Ala2, N-Me-Phe4, Gly5-ol]Enkephalin (DAMGO) (0.03-2 nmol), but not [D-Pen2,5]enkephalin (DPDPE) and U-50,488, dose-dependently elicited facial scratching by i.c. injection. These results suggest that morphine and DAMGO increased facial scratching, probably mediated by central opioid mu-receptors in mice, and such scratching was due to a sensation, probably itching. The present animal model may be useful for analyzing opioid-mediated central itching. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Cisterna Magna; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Male; Mice; Mice, Inbred Strains; Microinjections; Morphine; Naloxone; Narcotic Antagonists; Pruritus; Pyrrolidines; Receptors, Opioid, mu | 1997 |
Effects of central administration of opioids on facial scratching in monkeys.
Epidural and intrathecal administration of opioids to humans can produce facial pruritus and scratching that is naloxone reversible. It has been proposed that opioids may act at the level of the medulla to produce facial pruritus and associated scratching behavior. We investigated the effects of mu, delta and kappa opioid-receptor agonists microinjected unilaterally into the medullary dorsal horn (MDH) on facial scratching in cynomolgus monkeys. The selective mu opioid-receptor agonist, DAMGO (3.1-25.0 ng) produced large dose-dependent, naloxone-reversible increases in facial scratches. The selective delta opioid-receptor agonist, DPDPE (1.0-5.0 micrograms) and the selective kappa opioid-receptor agonist, U-50,488H (0.1-5.0 micrograms) did not produce significant increases in facial scratching behavior. We conclude that the MDH is a site where DAMGO, a mu opioid-receptor agonist, can act to produce facial scratching in monkeys, and that the MDH is likely the site where centrally administered opioids act to produce facial pruritus in humans. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Face; Injections, Spinal; Macaca fascicularis; Male; Microinjections; Narcotics; Pruritus; Pyrrolidines; Spinal Cord | 1992 |