u-50488 has been researched along with Hypoxia* in 10 studies
10 other study(ies) available for u-50488 and Hypoxia
Article | Year |
---|---|
The effect of activated κ-opioid receptor (κ-OR) on the role of calcium sensing receptor (CaSR) in preventing hypoxic pulmonary hypertension development.
κ-opioid receptor (κ-OR) plays a key role in preventing hypoxic pulmonary hypertension (HPH) development after activated by exogenous agonist U50,488H. Calcium sensing receptor (CaSR) activation induces HPH by promoting vasoconstriction and vascular remodeling. The activated κ-OR is reported to inhibit the expression of CaSR in pulmonary artery smooth muscle cells (PASMCs). Thus, in this study, we aimed to explore the effect of activated κ-OR on the role of CaSR in preventing HPH development. An HPH rat model was constructed using Sprague-Dawley rats. Changes in mean pulmonary arterial pressure (mPAP) and right ventricular pressure (RVP) mediated by κ-OR agonist U50,488H and CaSR inhibitor NPS2143 were observed. The effects of CaSR agonist spermine and inhibitor NPS2143 on pulmonary artery tension were tested. The expression and localization of κ-OR and CaSR were measured in isolated PASMCs. A cell-counting kit-8 assay was performed to evaluate the effect of spermine in PASMC proliferation. Expression of proliferating cell nuclear antigen (PCNA), Erk, and p-Erk was evaluated by western blot analysis. Results showed that κ-OR and CaSR were co-expressed and colocalized in PASMCs under normoxic and hypoxic conditions. Interactions between κ-OR and CaSR were also observed. Spermine improved vasoconstriction in the pulmonary artery in HPH rats, which was abolished by U50,488H. RVP and mPAP were significantly increased in HPH rats under CaSR stimulation, but were significantly reduced when the rats were pretreated with U50,488H and NPS2143 (P < 0.01). Spermine treatment significantly promoted PASMC proliferation, which was significantly inhibited by U50,488H, p38 inhibitor SB203580, JNK inhibitor SP600125, Erk inhibitor SCH772984, and MEK inhibitor U0126, especially Erk inhibitor (P < 0.01). Spermine significantly increased PCNA and P-Erk expression in hypoxic conditions, which was inhibited by U50,488H and NPS2143. κ-OR stimulation prevented HPH development via the CaSR/MAPK signaling pathway. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cell Proliferation; Disease Models, Animal; Hypertension, Pulmonary; Hypoxia; Male; MAP Kinase Signaling System; Myocytes, Smooth Muscle; Naphthalenes; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Calcium-Sensing; Receptors, Opioid, kappa; Signal Transduction; Spermine; Vascular Remodeling | 2020 |
Quaternary ammonium salt of U50,488H elicits protective effects against hypoxic pulmonary hypertension.
The present study aimed to investigate the role of quaternary ammonium salt of U50,488H (Q-U50,488H) in hypoxic pulmonary hypertension (HPH) and underlying mechanisms involved. A HPH animal model was established in rats under hypoxia and the mean pulmonary arterial pressure (mPAP) and right ventricular pressure (RVP) were measured. Relaxation of the pulmonary artery in response to Q-U50,488H was determined. In addition, expression and activity of endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) with NO content, Akt expression, total antioxidant capacity (T-AOC), and gp91phox were evaluated. Cell viability was determined by the cell counting kit-8 (CCK-8) assay. We demonstrated that both the molecular weight and solubility of Q-U50,488H were higher than that of U50,488H. Q-U50,488H reduced mPAP and RVP and prevented the development of HPH. Moreover, Q-U50,488H relaxed the pulmonary arteries from both normal and HPH rats in a time-dependent manner. Under hypoxic conditions, Q-U50,488H significantly increased Akt phosphorylation, eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary arteries of HPH rats. In addition, the activity of eNOS was elevated, but the activity of iNOS was reduced when Q-U50,488H was given under hypoxia. Q-U50,488H significantly counteracted the increase of gp91phox expression in pulmonary arteries under hypoxia. In addition, in vitro studies suggested that Q-U50,488H inhibited pulmonary artery smooth muscle cells (PASMCs) proliferation under hypoxic conditions and that the effects of Q-U50,488H were blocked by nor-binaltorphimine (nor-BNI). Thus, our results provided evidence that Q-U50,488H plays a protective role against HPH via κ-opioid receptor stimulation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Arterial Pressure; Cell Proliferation; Hypertension, Pulmonary; Hypoxia; Myocytes, Smooth Muscle; Nitric Oxide; Nitric Oxide Synthase Type III; Phosphorylation; Proto-Oncogene Proteins c-akt; Pulmonary Artery; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Superoxides; Vasodilation | 2018 |
Κ-opioid receptor stimulation improves endothelial function in hypoxic pulmonary hypertension.
The present study was designed to investigate the effect of κ-opioid receptor stimulation with U50,488H on endothelial function and underlying mechanism in rats with hypoxic pulmonary hypertension (HPH). Chronic hypoxia-induced HPH was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, mean pulmonary arterial pressure (mPAP), right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. Relaxation of pulmonary artery in response to acetylcholine (ACh) was determined. Expression and activity of endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) with NO production, total antioxidant capacity (T-AOC), gp91(phox) expression and nitrotyrosine content were measured. The effect of U50,488H administration during chronic hypoxia was investigated. Administration of U50,488H significantly decreased mPAP and right ventricular hypertrophy as evidenced by reduction in RVP and RVHI. These effects were mediated by κ-opioid receptor. In the meantime, treatment with U50,488H significantly improved endothelial function as evidenced by enhanced relaxation in response to ACh. Moreover, U50,488H resulted in a significant increase in eNOS phosphorylation, NO content in serum, and T-AOC in pulmonary artery of HPH rats. In addition, the activity of eNOS was enhanced, but the activity of iNOS was attenuated in the pulmonary artery of chronic hypoxic rats treated with U50,488H. On the other hand, U50,488H markedly blunted HPH-induced elevation of gp91(phox) expression and nitrotyrosine content in pulmonary artery, and these effects were blocked by nor-BNI, a selective κ-opioid receptor antagonist. These data suggest that κ-opioid receptor stimulation with U50,488H improves endothelial function in rats with HPH. The mechanism of action might be attributed to the preservation of eNOS activity, enhancement of eNOS phosphorylation, downregulation of iNOS activity and its antioxidative/nitrative effect. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Animals; Blood Pressure; Endothelium, Vascular; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peroxynitrous Acid; Phosphorylation; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Superoxides; Vasodilation; Ventricular Pressure | 2013 |
Vasculoprotective effect of U50,488H in rats exposed to chronic hypoxia: role of Akt-stimulated NO production.
Impairment of pulmonary endothelium function in the pulmonary artery is a direct result of chronic hypoxia. This study is to investigate the vasculoprotective effects of U50,488H (a selective κ-opioid receptor agonist) and its underlying mechanism in hypoxia-induced pulmonary artery endothelial functional injury. Chronic hypoxia was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. The pulmonary vascular dysfunction, effect of nitric oxide synthase inhibitor (l-NAME) on the relaxation of U50,488H, and level of nitric oxide (NO) were determined. In vitro, the signaling pathway involved in the anti-apoptotic effect of U50,488H was investigated. Cultured endothelial cells were subjected to simulated hypoxia, and cell apoptosis was determined by TUNEL staining. U50,488H (1.25 mg/kg) significantly reduced RVP and RVHI in hypoxia. U50,488H markedly improved both pulmonary endothelial function (maximal vasorelaxation in response to ACh: 74.9 ± 1.8%, n = 6, P <0.01 vs. hypoxia for 2 wk group) and increased total NO production (1.65 fold). U50,488H relaxed the pulmonary artery rings of the hypoxic rats. This effect was partly abolished by l-NAME. In cells, U50,488H both increased NO production and reduced hypoxia-induced apoptosis. Moreover, pretreatment with nor-binaltorphimine (nor-BNI, a selective κ-opioid receptor antagonist), PI3K inhibitor, Akt inhibitor or l-NAME almost abolished anti-apoptotic effect exerted by U50,488H. U50,488H resulted in increases in Akt and eNOS phosphorylation. These results demonstrate that pretreatment with U50,488H attenuates hypoxia-induced pulmonary vascular endothelial dysfunction in an Akt-dependent and NO-mediated fashion. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Apoptosis; Cells, Cultured; Endothelium, Vascular; Hypoxia; In Vitro Techniques; Male; Models, Animal; Naltrexone; Nitric Oxide; Nitric Oxide Synthase Type III; Phosphorylation; Proto-Oncogene Proteins c-akt; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2013 |
Cardioprotective and antiarrhythmic effect of U50,488H in ischemia/reperfusion rat heart.
The objective of this study was to investigate the protective effect of U50,488H, a selective kappa-opioid receptor agonist, in the ischemia/reperfusion (I/R) rat and to delineate the underlying mechanism. Rat heart I/R injury was induced by occluding the left anterior descending coronary artery for 45 min and restoring perfusion for 120 min. U50,488H or vehicle was intravenously injected before ischemia. Electrocardiogram, heart rate (HR), arterial blood pressure (ABP), left ventricular pressure (LVP), systolic function (+dp/dtmax), and diastolic function (-dp/dtmax) were monitored in the course of the experiment. Myocardial infarction size was evaluated. Plasma concentrations of cardiac troponin T (cTnT), creatine kinase (CK), and lactate dehydrogenase (LDH) were measured. Single rat ventricular myocyte was obtained by enzymatic dissociation method. The potassium currents (IK) of isolated ventricular myocytes were recorded with the whole-cell configuration of the patch-clamp technique. Compared with the sham control group, no significant change was found in HR, while ABP, LVP and +/-dp/dtmax were significantly reduced in the I/R group. Administration of U50,488H significantly lowered HR in both control and I/R groups. Compared with the vehicle-treated I/R group, administration of U50,488H had no significant effect on I/R-induced reduction in ABP, LVP, and +/-dp/dtmax. However, this treatment significantly reduced the myocardial infarction size, and markedly decreased the contents of plasma cTnT, CK and LDH. During ischemia and reperfusion, the incidence of ventricular arrhythmia in U50,488H-treated rats was significantly reduced. These effects were independent of the bradycardia induced by U50,488H, as the reducing infarct size and antiarrhythmic effect of U50,488H were still observed in animals in which heart rate was kept constant by electrical pacing. U50,488H and BRL-52537 still produced an antiarrhythmic effect when the rat heart was subjected to a shorter ischemic period of 10 min occlusion of coronary artery, which produced no infarction. IK of the myocytes were inhibited by U50,488H in a dose-dependent manner in normal and hypoxic rat ventricular myocytes. However, the effects of U50,488H on IK did not show any significant difference in normal and hypoxic myocytes. The above-described effects of U50,488H were totally blocked by nor-Binaltorphimine, a selective kappa-opioid receptor antagonist. The results suggest that kappa-opioid agonist U50,48 Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cardiotonic Agents; Electrocardiography; Electrophysiology; Hypoxia; Male; Muscle Cells; Myocardial Reperfusion Injury; Myocardium; Piperidines; Potassium Channels; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reperfusion Injury; Troponin T; Ventricular Function, Left | 2007 |
U50,488H depresses pulmonary pressure in rats subjected to chronic hypoxia.
In this study, we determined the effect of U50,488H (a selective kappa-opioid receptor agonist) on pulmonary artery in rats and investigated its prevention and treatment effects on hypoxic pulmonary hypertension (HPH). Isolated pulmonary arterial rings were superfused and the tension of the vessel was measured. The model of HPH was developed and indexes for hemodynamics and right ventricular hypertrophy were measured. We found that U50,488H relaxed the pulmonary artery rings in a dose-dependent manner and the effect was abolished by nor-binaltorphimine, a selective kappa-opioid receptor antagonist. Intravenous administration of U50,488H significantly lowered mean pulmonary artery pressure (mPAP) in normal rats and this effect was also abolished by nor-binaltorphimine. Hypoxia induced severe HPH in rats and intraperitoneal administration of U50,488H (every other day) during chronic hypoxia reduced mPAP and attenuated right ventricular hypertrophy compared with the control group. Moreover, acute intravenous administration of U50,488H after the rats subjected to chronic hypoxia for 4 weeks significantly lowered mPAP. Thus, U50,488H has significant vasorelaxant effect in rat pulmonary artery and has certain preventive and therapeutic application in HPH. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antihypertensive Agents; Blood Pressure; Chronic Disease; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; In Vitro Techniques; Injections, Intravenous; Male; Perfusion; Pulmonary Artery; Pulmonary Circulation; Rats; Rats, Sprague-Dawley | 2006 |
Impaired [Ca(2+)](i) and pH(i) responses to kappa-opioid receptor stimulation in the heart of chronically hypoxic rats.
kappa-Opioid receptor (kappa-OR) stimulation with U50,488H, a selective kappa-OR agonist, or activation of protein kinase C (PKC) with 4-phorbol 12-myristate 13-acetate (PMA), an activator of PKC, decreased the electrically induced intracellular Ca(2+) ([Ca(2+)](i)) transient and increased the intracellular pH (pH(i)) in single ventricular myocytes of rats subjected to 10% oxygen for 4 wk. The effects of U50,488H were abolished by nor-binaltorphimine, a selective kappa-OR antagonist, and calphostin C, a specific inhibitor of PKC, while the effects of PMA were abolished by calphostin C and ethylisopropylamiloride (EIPA), a potent Na(+)/H(+) exchange blocker. In both right hypertrophied and left nonhypertrophied ventricles of chronically hypoxic rats, the effects of U50,488H or PMA on [Ca(2+)](i) transient and pH(i) were significantly attenuated and completely abolished, respectively. Results are first evidence that the [Ca(2+)](i) and pH(i) responses to kappa-OR stimulation are attenuated in the chronically hypoxic rat heart, which may be due to reduced responses to PKC activation. Responses to all treatments were the same for right and left ventricles, indicating that the functional impairment is independent of hypertrophy. kappa-OR mRNA expression was the same in right and left ventricles of both normoxic and hypoxic rats, indicating no regional specificity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Calcium; Chronic Disease; Electric Stimulation; Heart Ventricles; Hydrogen-Ion Concentration; Hypoxia; Intracellular Membranes; Male; Myocardial Contraction; Myocardium; Osmolar Concentration; Protons; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; RNA, Messenger; Tetradecanoylphorbol Acetate | 2000 |
Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies.
Substantiating evidence has raised the possibility that sigma ligands may have therapeutic potential as neuroprotective agents in brain ischemia. It has been suggested that the neuroprotective capacity of sigma ligands is related primarily to their affinity for the NMDA receptor complex and not to any selective action at the sigma binding site. However, sigma specific ligands, devoid of significant affinity for the NMDA receptor, are also neuroprotective via an inhibition of the ischemic-induced presynaptic release of excitotoxic amino acids. In the present study, we have investigated the potential neuroprotective effect of a comprehensive series of sigma ligands, with either significant (sigma/PCP) or negligible (sigma) affinity for the PCP site of the NMDA receptor, in order to delineate a selective sigma site-dependent neuroprotective effect. For this aim, we have employed two different neuronal culture toxicity paradigms implicating either postsynaptic-mediated neurotoxicity, (brief exposure of cultures to a low concentration of NMDA or Kainate) or pre- and postsynaptic mechanisms (exposure to hypoxic/hypoglycemic conditions). Only sigma ligands with affinity for the NMDA receptor [(+) and (-) cyclazocine, (+) pentazocine, (+) SKF-10047, ifenprodil and haloperidol] were capable of attenuating NMDA-induced toxicity whereas the sigma [(+)BMY-14802, DTG, JO1784, JO1783, and (+)3-PPP] and kappa-opioid [CI-977, U-50488H] ligands, with very low affinity for the NMDA receptor, were inactive. The rank order of potency, based on the 50% protective concentration (PC50) value, of sigma/PCP ligands against NMDA-mediated neurotoxicity correlates with their affinity for the PCP site of the NMDA receptor, and not with their affinity for the sigma site. In addition sigma/PCP, sigma or kappa-opioid ligands failed to attenuate kainate-mediated neurotoxicity. On the other hand, sigma/PCP, sigma and kappa-opioid ligands were potent inhibitors of hypoxia/hypoglycemia-induced neurotoxicity, although their neuroprotective potency did not correlate with their affinity for either the sigma or PCP binding sites. In conclusion, the ability of sigma and kappa-opioid ligands to attenuate hypoxia/hypoglycemia, but not NMDA or kainate-induced toxicity, suggests that these drugs exert their neuroprotective role by a predominantly presynaptic mechanism possibly by inhibiting ischemic-mediated glutamate release. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anti-Arrhythmia Agents; Antihypertensive Agents; Benzofurans; Brain Ischemia; Cell Death; Cells, Cultured; Dizocilpine Maleate; Hypoxia; Kainic Acid; Ligands; N-Methylaspartate; Neurons; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Phencyclidine; Receptors, sigma | 1995 |
Effects of naloxone, morphine and kappa-opioid receptor agonists on hypoxia/hypoglycemia-induced reduction of 2-deoxyglucose uptake in hippocampal slices from U-50,488H-tolerant rats.
The aim of the present study was to determine whether U-50,488H and U-62,066E, kappa-opioid receptor agonists cause a neuroprotective action against hypoxia/hypoglycemia-induced reduction in 2-deoxyglucose (2-DG) uptake of hippocampal slices from U-50,488H-tolerant rats. Both U-50,488H and U-62,066E exhibited an attenuating effect on hypoxia/hypoglycemia-induced reduction in 2-DG uptake of hippocampal slices. Hypoxia/hypoglycemia-induced deficit of 2-DG uptake was prevented by cotreatment with naloxone, an opioid receptor antagonist, but potentiated by cotreatment with morphine, a mu-opioid receptor agonist. Chronic administration of U-50,488H resulted in the development of tolerance to the analgesic effect as well as the neuroprotective effect whereas this treatment affected neither basal- nor hypoxia/hypoglycemia-induced decreases in 2-DG uptake. Chronic administration of U-50,488H did not modify naloxone-induced attenuation of 2-DG uptake deficit but slightly potentiated the morphine-induced exacerbation. These findings suggest that the tolerance to kappa-opioid receptors does not affect the mu-opioid receptor-mediated neuroprotective or neurotoxic action. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Deoxyglucose; Hippocampus; Hypoglycemia; Hypoxia; Male; Morphine; Naloxone; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1994 |
Delta-1 opioid agonist acutely increases hypoxic tolerance.
Severe, intermittent hypoxia (hypoxic conditioning) induces an acute adaptation such that survival time during a subsequent hypoxic challenge is increased. The opioid antagonist, naloxone, and the delta-selective antagonists, naltrindole and 7-benzylide-nenaltrexone (BNTX), block this adaptation. The current study continued the pharmacological characterization of this acute adaptation to hypoxia by using selective opioid agonists. [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (1 mg/kg s.c.), U50488H [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeacetamide methane sulfonate]; 30 mg/kg s.c.] and [D-Pen2,D-Pen5]-enkephalin (DPDPE; 100 mg/kg s.c.) further augmented the hypoxic conditioning induced increase in survival time. DPDPE (56.1 mg/kg of peptide i.v.) increased survival time of naive mice independently of hypoxic conditioning and decreased body temperature. The DPDPE-induced increase in survival time was blocked by the delta-1-selective antagonist, BNTX (0.6 mg/kg s.c.), but not by the delta-2-selective antagonist, naltrindole (10 mg/kg s.c.). However, the DPDPE-induced decrease in body temperature was not blocked by either BNTX or naltrindole. These results supported our hypothesis that the mechanism of acute hypoxic adaptation involves an endogenous delta-1 opioid pathway and demonstrated that activation of a delta-1 receptor mimicked acute hypoxic adaptation induced by intermittent hypoxia. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adaptation, Physiological; Animals; Benzylidene Compounds; Body Temperature; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Hypoxia; Male; Mice; Naltrexone; Pyrrolidines; Receptors, Opioid, delta | 1994 |