u-50488 and Heart-Failure

u-50488 has been researched along with Heart-Failure* in 2 studies

Other Studies

2 other study(ies) available for u-50488 and Heart-Failure

ArticleYear
Kappa-Opioid Agonist U50,488H-Mediated Protection Against Heart Failure Following Myocardial Ischemia/Reperfusion: Dual Roles of Heme Oxygenase-1.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 39, Issue:6

    The selective κ-opioid agonist U50,488H protects heart from myocardial ischemia-reperfusion (MI/R) injury. We examined whether U50,488H is also beneficial for MI/R induced heart failure.. Anesthetized male Sprague-Dawley rats were subjected to 30 min of myocardial ischemia via left anterior descending coronary artery (LAD) occlusion, followed by 4 weeks of reperfusion. Infarct size was examined by Evans blue/triphenyl tetrazolium chloride (TTC) staining. Cardiac function and remodeling were examined by echocardiography and histology. HO-1 gene transcription and expression were measured by RT-PCR and western blot.. Compared to vehicle-treated MI/R rats, rats administered a single dose of U50,488H at the beginning of reperfusion exhibited reduced myocardial infarct size, oxidative stress, hypertrophy, and fibrosis, improved mechanical function, and greater neovascularization. U50,488H also increased myocardial heme oxygenase (HO)-1 gene transcription and expression, while pharmacological HO-1 inhibition reversed all protective effects of U50,488H. Furthermore, U50,488H protected control cultured cardiomyoctes against simulated I/R-induced apoptosis but not cultures subjected to shRNA-mediated HO-1 knockdown. Inhibition of HO-1 in the subacute phase of reperfusion reversed the U50,488H-induced increase in neovascularization and suppression of oxidative stress. Finally, U50,488H increased Akt phosphorylation and nuclear translocation of Nrf2, a key HO-1 transcription activator, while inhibition of PI3K-Akt signaling abolished U50,488H-induced Nrf2 nuclear translocation, HO-1 upregulation, and cardioprotection.. Activation of HO-1 expression through the PI3K-Akt-Nrf2 pathway may mediate the acute and long-term protective effects of U50,488H against heart failure by enhancing cardiomyocyte survival and neoangiogenesis and by reducing oxidative stress.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cardiotonic Agents; Gene Expression Regulation; Gene Silencing; Genetic Vectors; Heart Failure; Heme Oxygenase-1; Lentivirus; Male; Models, Biological; Myocardial Reperfusion Injury; Myocytes, Cardiac; Neovascularization, Physiologic; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Receptors, Opioid, kappa; RNA, Small Interfering; Signal Transduction; Transcription, Genetic

2016
Kappa and delta opioid receptor signaling is augmented in the failing heart.
    Journal of molecular and cellular cardiology, 2009, Volume: 47, Issue:4

    The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Calcium Signaling; Cardiomegaly; Cardiomyopathies; Cricetinae; Cyclic AMP; Fentanyl; Heart Failure; Heart Function Tests; Heterotrimeric GTP-Binding Proteins; In Vitro Techniques; Myocardial Contraction; Opioid Peptides; Pertussis Toxin; Quinolines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Signal Transduction; Systole

2009