u-50488 and Drug-Overdose

u-50488 has been researched along with Drug-Overdose* in 2 studies

Other Studies

2 other study(ies) available for u-50488 and Drug-Overdose

ArticleYear
Analysis of Novel Synthetic Opioids U-47700, U-50488 and Furanyl Fentanyl by LC-MS/MS in Postmortem Casework.
    Journal of analytical toxicology, 2016, Volume: 40, Issue:9

    Following series of synthetic cannabinoid and synthetic cathinone derivatives, the illicit drug market has begun to see increased incidence of synthetic opioids including fentanyl and its derivatives, and other chemically unrelated opioid agonists including AH-7921 and MT-45. Among the most frequently encountered compounds in postmortem casework have been furanyl fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylfuran-2-carboxamide, Fu-F) and U-47700 (trans-3,4-dichloro-N-(2-(dimethylamino)cyclohexyl)-N-methylbenzamide). Both drugs have been reported to be present in the heroin supply and to be gaining popularity among recreational opioid users, but were initially developed by pharmaceutical companies in the 1970s as candidates for development as potential analgesic therapeutic agents. A method was developed and validated for the analysis of U-47700, U-50488 and furanyl fentanyl in blood specimens. A total of 20 postmortem cases, initially believed to be heroin or other opioid-related drug overdoses, were submitted for quantitative analysis. The analytical range for U-47770 and U-50488 was 1-500 and 1-100 ng/mL for furanyl fentanyl. The limit of detection was 0.5 ng/mL for all compounds. Within the scope of the method, U-47700 was the only confirmed drug in 11 of the cases, 5 cases were confirmed for both U-47700 and furanyl fentanyl, and 3 cases were confirmed only for furanyl fentanyl. The mean and median blood concentrations for U-47700 were 253 ng/mL (±150) and 247 ng/mL, respectively, range 17-490 ng/mL. The mean and median blood concentrations for furanyl fentanyl were 26 ng/mL (±28) and 12.9 ng/mL, respectively, range 2.5-76 ng/mL. Given the widespread geographical distribution and increase in prevalence in postmortem casework, toxicology testing should be expanded to include testing for "designer opioids" in cases with histories consistent with opioid overdose but with no traditional opioids present or insufficient quantities to account for death.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Opioid; Animals; Autopsy; Benzamides; Calibration; Chromatography, Liquid; Drug Overdose; Fentanyl; Furans; Gas Chromatography-Mass Spectrometry; Heroin; Humans; Male; Morphine; Sheep; Solid Phase Extraction; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry

2016
Kappa2 opioid receptors in limbic areas of the human brain are upregulated by cocaine in fatal overdose victims.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, Nov-01, Volume: 17, Issue:21

    Cocaine is thought to be addictive because chronic use leads to molecular adaptations within the mesolimbic dopamine (DA) circuitry that affect motivated behavior and emotion. Although the reinforcing effects of cocaine are mediated primarily by blocking DA reuptake into the presynaptic nerve terminal, reciprocal signaling between DA and endogenous opioids has important implications for cocaine dependence. The present study used the opioid antagonist 6 beta-[125iodo]-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([125I]IOXY) after pretreatment with the site-directed acylating agents 2-(p-ethoxybenzyl)-1-diethylaminoethyl-5-isothiocyanatobenzimid iazole -HCl (mu-selective) and N-phenyl-N-[1-(2-(4-isothiocyanato)-phenethyl)-4-piperidinyl]-p ropana mide-HCl (delta-selective) to examine the effect of cocaine exposure on the distribution and density of kappa2 receptors in autopsy studies of human cocaine fatalities. The selective labeling of the kappa2 receptor subtype was demonstrated by competition binding studies, which gave a pharmacological signature (IOXY >/= (+)-bremazocine >> U50,488 >/= U69,593) distinct from either the kappa1 or kappa3 receptor subtypes. Visualization of [125I]IOXY labeling revealed that kappa2 receptors localize to mesocortical and subcortical limbic areas, including the cingulate, entorhinal, insular, and orbitofrontal cortices and the nucleus accumbens and amygdala. The number of kappa2 receptors in the nucleus accumbens and other limbic brain regions from cocaine fatalities was increased twofold as compared with age-matched and drug-free control subjects. Cocaine overdose victims, who experienced paranoia and marked agitation before death, also had elevated densities of kappa2 receptors in the amygdala. These findings demonstrate for the first time that kappa2 receptor numbers are upregulated by cocaine exposure. The molecular adaptation of kappa2 receptor numbers may play a role in the motivational incentive associated with episodes of binge cocaine use and in the dysphoria that follows abrupt cocaine withdrawal.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adult; Amygdala; Benzeneacetamides; Benzomorphans; Binding, Competitive; Brain; Brain Chemistry; Caudate Nucleus; Cocaine; Dopamine; Dopamine Uptake Inhibitors; Drug Overdose; Female; Fentanyl; Gyrus Cinguli; Humans; Isothiocyanates; Kinetics; Male; Morphinans; Protein Binding; Pyrrolidines; Receptors, Opioid, kappa; Tissue Distribution; Up-Regulation

1997