u-50488 has been researched along with Abdominal-Pain* in 4 studies
4 other study(ies) available for u-50488 and Abdominal-Pain
Article | Year |
---|---|
Methyl-orvinol-Dual activity opioid receptor ligand inhibits gastrointestinal transit and alleviates abdominal pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome.
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D.. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil.. Methyl-orvinol (10. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics; Analgesics, Opioid; Animals; Colon; Diarrhea; Disease Models, Animal; Gastrointestinal Motility; Gastrointestinal Transit; Irritable Bowel Syndrome; Male; Mice; Mice, Inbred BALB C; Muscle Contraction; Muscle, Smooth; Naloxone; Naltrexone; Receptors, Opioid; Thebaine | 2017 |
Visceral chemical nociception in mice lacking mu-opioid receptors: effects of morphine, SNC80 and U-50,488.
Writhing responses to intraperitoneal acetic acid administration and their modulation by mu-, kappa- and delta-opioid receptor agonists were compared in wild-type and mu-opioid receptor knockout mice. Unpretreated homozygous knockout mice displayed less writhing than wild-type mice. U-50,488 [trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolidinyl)cyclohexyl]-benze neacetamide]) reduced writhing responses in wild-type and knockouts. Morphine and SNC80 [(+)-4-[9-alpha-R)-alpha-(2S,5RO-4-allyl-2,5-dimethyl-1-piperaziny l)-3-methoxybenzyl]-N,N-diethylbenzamide] were effective in wild-type mice but ineffective in knockouts. Mu-opioid receptors appear to play important roles in responses to this visceral nociceptive stimulus and its modulation by mu- and delta-opioid receptor agonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Benzamides; Female; Male; Mice; Mice, Knockout; Morphine; Pain Measurement; Piperazines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1999 |
The kappa opioid receptor is associated with the perception of visceral pain.
mu-, delta- and kappa-opioid receptors are widely expressed in the central nervous system where they mediate the strong analgesic and mood-altering actions of opioids, and modulate numerous endogenous functions. To investigate the contribution of the kappa-opioid receptor (KOR) to opioid function in vivo, we have generated KOR-deficient mice by gene targeting. We show that absence of KOR does not modify expression of the other components of the opioid system, and behavioural tests indicate that spontaneous activity is not altered in mutant mice. The analysis of responses to various nociceptive stimuli suggests that the KOR gene product is implicated in the perception of visceral chemical pain. We further demonstrate that KOR is critical to mediate the hypolocomotor, analgesic and aversive actions of the prototypic kappa-agonist U-50,488H. Finally, our results indicate that this receptor does not contribute to morphine analgesia and reward, but participates in the expression of morphine abstinence. Together, our data demonstrate that the KOR-encoded receptor plays a modulatory role in specific aspects of opioid function. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics, Opioid; Animals; Benzofurans; Humans; Mice; Mice, Knockout; Morphine; Nociceptors; Pyrrolidines; Receptors, Opioid, kappa | 1998 |
Fedotozine blocks hypersensitive visceral pain in conscious rats: action at peripheral kappa-opioid receptors.
The effect of fedotozine on visceral hypersensitivity was evaluated in conscious rats. One hour after colonic irritation (0.6% acetic acid intracolonically), a 30 mmHg colonic distension was applied for 10 min. Irritation increased the number of abdominal contractions induced by colonic distension (23.4 +/- 4.1 versus 4.8 +/- 1.4 in saline-treated rats, P < 0.001). Facilitation of colonic pain was reversed in a dose-dependent manner by fedotozine ((+)-(-1R1)-1-phenyl-1-[(3,4,5-trimethoxy)benzyloxymethyl]-N ,N-dimethyl-n-propylamine), (+/-)-U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-1-pyrrolidinyl]cyclohexyl)benzen eacetamide) and morphine (respective ED50 values 0.67, 0.51 and 0.23 mg/kg s.c.). The kappa-opioid receptor antagonist, nor-binaltorphimine, abolished the effects of fedotozine and (+/-)-U-50,488H but not those of morphine. Low doses of naloxone (30 microg/kg s.c.) blocked the effect of morphine but not of fedotozine or (+/-)-U-50,488H. After intracerebroventricular administration, morphine was very potent (ED50 1.7 microg/rat), (+/-)-U-50,488H poorly active (58% of antinociception at 300 microg/rat) and fedotozine inactive up to 300 microg/rat. These results show that fedotozine blocks hypersensitive visceral pain by acting on peripheral kappa-opioid receptors in animals. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics, Opioid; Animals; Antihypertensive Agents; Benzyl Compounds; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Morphine; Muscle Contraction; Propylamines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 1997 |