u-18666a and Disease-Models--Animal

u-18666a has been researched along with Disease-Models--Animal* in 5 studies

Reviews

2 review(s) available for u-18666a and Disease-Models--Animal

ArticleYear
Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.
    Antimicrobial agents and chemotherapy, 2015, Volume: 59, Issue:10

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients.

    Topics: Amides; Amidines; Androstenes; Animals; Anti-Inflammatory Agents; Antibodies, Monoclonal; Antiviral Agents; Benzofurans; Cytosine; Disease Models, Animal; Disease Outbreaks; Ebolavirus; Hemorrhagic Fever, Ebola; Humans; Immune Sera; Organophosphonates; Pyrazines; RNA, Small Interfering; Stilbenes; Virus Replication

2015
Type C Niemann-Pick disease: use of hydrophobic amines to study defective cholesterol transport.
    Developmental neuroscience, 1991, Volume: 13, Issue:4-5

    Niemann-Pick Type C (NPC) disease is a cholesterol lipidosis resulting from defective postlysosomal cholesterol transport. In normal cells this segment of cholesterol trafficking is inhibited by treatment with either U18666A or imipramine. Other compounds are also capable of blocking postlysosomal cholesterol transport: stearylamine, RV-538, and sphinganine inhibit low-density lipoprotein-induced esterification of cholesterol and cause unesterified cholesterol to accumulate in perinuclear vesicles. These vesicles can be stained with filipin to give a staining pattern indistinguishable from that seen in NPC fibroblasts. Because all of these compounds are hydrophobic amines, we conclude that most, if not all, hydrophobic amines block the postlysosomal transport of cholesterol. These results also raise the possibility that an endogenous amine, e.g., sphinganine, may inhibit cholesterol transport in NPC.

    Topics: Amines; Androstenes; Animals; Biological Transport; Cells, Cultured; Cholesterol; Cholesterol Esters; Disease Models, Animal; Fibroblasts; Filipin; Humans; Imipramine; Lysosomes; Mice; Morpholines; Niemann-Pick Diseases; Sphingosine; Structure-Activity Relationship

1991

Other Studies

3 other study(ies) available for u-18666a and Disease-Models--Animal

ArticleYear
Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model.
    Brain research, 2004, Jul-09, Volume: 1013, Issue:2

    Brain cholesterol synthesis inhibition (CSI) at a young age in rats has been shown to be a faithful model of acquired absence epilepsy, a devastating condition for which few therapies or models exist. We employed the CSI model to study cellular mechanisms of acquired absence epilepsy in Long-Evans Hooded rats. Patch-clamp, whole-cell recordings were compared from neurons acutely dissociated from the nucleus reticularis of thalamus (nRt) treated and untreated with a cholesterol synthesis inhibitor, U18666A. In U18666A-treated animals, 91% of rats developed EEG spike-waves (SWs). Patchclamp results revealed that although there was no remarkable change in GABAA receptor affinity, both a loss of ability of benzodiazepines to enhance GABAA-receptor responses and an increase of Zn2+ inhibition of GABAA-receptor responses of nRt neurons occurred in Long-Evans Hooded rats previously administered U18666A. This change was specific, since no significant changes were found in neurons exposed to the GABA allosteric modulator, pentobarbital. Taken collectively, these findings provide evidence for abnormalities in benzodiazepine and Zn2+ modulation of GABAA receptors in the CSI model, and suggest that decreased gamma2 subunit expression may underlie important aspects of generation of thalamocortical SWs in atypical absence seizures. The present results are also consistent with recent findings that mutation of the gamma2 subunit of the GABAA receptor changes benzodiazepine modulation in families with generalized epilepsy syndromes.

    Topics: Androstenes; Animals; Anticonvulsants; Benzodiazepines; Diazepam; Disease Models, Animal; Enzyme Inhibitors; Epilepsy, Absence; GABA Modulators; gamma-Aminobutyric Acid; Membrane Potentials; Patch-Clamp Techniques; Pentobarbital; Rats; Rats, Long-Evans; Receptors, GABA-A; Thalamic Nuclei; Zinc

2004
Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis.
    Neurochemical research, 2000, Volume: 25, Issue:5

    Desmosterolosis is a rare, autosomal recessive, human disease characterized by multiple congenital anomalies in conjunction with grossly elevated levels of desmosterol and markedly reduced levels of cholesterol in all bodily tissues. Herein, we evaluated retinal sterol composition, histology, and electrophysiological function in an animal model that exhibited the biochemical features of desmosterolosis, produced by treating pregnant rats and their progeny with U18666A, an inhibitor of desmosterol reductase. Treated rats had cataracts, were substantially smaller, and had markedly high levels of desmosterol and profoundly low levels of cholesterol in their retinas and other tissues compared to age-matched controls. However, their retinas were histologically normal and electrophysiologically functional. These results suggest that desmosterol may be able to replace cholesterol in the retina, both structurally and functionally. These findings are discussed in the context of "sterol synergism".

    Topics: Abnormalities, Multiple; Androstenes; Animals; Anticholesteremic Agents; Cholesterol; Desmosterol; Disease Models, Animal; Female; Humans; Lens, Crystalline; Lipid Metabolism, Inborn Errors; Phenotype; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Retina; Rod Cell Outer Segment; Sterols

2000
Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.
    Current eye research, 1992, Volume: 11, Issue:8

    Plasma membrane with its associated extrinsic proteins was isolated from normal and cataractous rat lenses by centrifugation of the total water insoluble fraction from homogenized lenses on a discontinuous sucrose gradient. Membrane, which we call "native" membrane, was recovered mainly from the 25/45% sucrose interface. Development of the experimental U18666A cataract resulted in plasma membrane shifting to higher density (the 50/55% sucrose fraction) and great increases in the urea soluble protein content of the lens. At early stages of cataract development, most of the increased urea soluble protein was membrane associated, presumably as extrinsic protein. With advancing cataract, most of the urea soluble protein appeared in an essentially membrane-free pellet fraction. The urea soluble protein associated with the cataract membrane was shown by combined IEF, SDS-PAGE, Western blotting, amino acid compositional analysis and protein sequence determinations to be mainly composed of modified alpha- and beta-crystallins. Alpha A-crystallin truncated by not more than 27 residues from the carboxyl terminus plus beta b1 crystallin truncated by 49 residues from the amino terminus were conclusively identified. In addition to beta b1, a population of six alpha-crystallin derived polypeptides were specifically enriched in the cataract membrane fraction. Four of these six alpha-crystallins appear to be truncated from their carboxyl terminus, a modification which should have increased their hydrophobicity. The pellet fraction, which accumulated in the lens nucleus as the cataract advanced, was enriched in urea soluble gamma-crystallin derived polypeptides. We suggest that protein insolubilization in this experimental cataract involves the selective and tight association of principally modified alpha-crystallins to the fiber cell plasma membrane.

    Topics: Amino Acid Sequence; Androstenes; Animals; Anticholesteremic Agents; Cataract; Cell Membrane; Centrifugation, Density Gradient; Crystallins; Disease Models, Animal; Electrophoresis, Polyacrylamide Gel; Isoelectric Point; Lens, Crystalline; Membrane Proteins; Molecular Sequence Data; Rats; Rats, Sprague-Dawley; Solubility

1992