u-104 has been researched along with Colorectal-Neoplasms* in 2 studies
2 other study(ies) available for u-104 and Colorectal-Neoplasms
Article | Year |
---|---|
Differential CMS-Related Expression of Cell Surface Carbonic Anhydrases IX and XII in Colorectal Cancer Models-Implications for Therapy.
Tumor-associated carbonic anhydrases IX (CAIX) and XII (CAXII) have long been in the spotlight as potential new targets for anti-cancer therapy. Recently, CAIX/CAXII specific inhibitor SLC-0111 has passed clinical phase I study and showed differential response among patients with colorectal cancer (CRC). CRC can be classified into four different consensus molecular subgroups (CMS) showing unique expression patterns and molecular traits. We questioned whether there is a CMS-related CAIX/CAXII expression pattern in CRC predicting response. As such, we analyzed transcriptomic data of tumor samples for CA9/CA12 expression using Cancertool. Protein expression pattern was examined in preclinical models comprising cell lines, spheroids and xenograft tumors representing the CMS groups. Impact of CAIX/CAXII knockdown and SLC-0111 treatment was investigated in 2D and 3D cell culture. The transcriptomic data revealed a characteristic CMS-related CA9/CA12 expression pattern with pronounced co-expression of both CAs as a typical feature of CMS3 tumors. Protein expression in spheroid- and xenograft tumor tissue clearly differed, ranging from close to none (CMS1) to strong CAIX/CAXII co-expression in CMS3 models (HT29, LS174T). Accordingly, response to SLC-0111 analyzed in the spheroid model ranged from no (CMS1) to clear (CMS3), with moderate in CMS2 and mixed in CMS4. Furthermore, SLC-0111 positively affected impact of single and combined chemotherapeutic treatment of CMS3 spheroids. In addition, combined CAIX/CAXII knockdown and more effective treatment with SLC-0111 reduced clonogenic survival of CMS3 modelling single cells. In conclusion, the preclinical data support the clinical approach of targeted CAIX/CAXII inhibition by showing linkage of expression with response and suggest that patients with CMS3-classified tumors would most benefit from such treatment. Topics: Animals; Antigens, Neoplasm; Carbonic Anhydrase IX; Carbonic Anhydrases; Colorectal Neoplasms; Humans; Phenylurea Compounds; Sulfonamides | 2023 |
Design and synthesis of 6-arylpyridine-tethered sulfonamides as novel selective inhibitors of carbonic anhydrase IX with promising antitumor features toward the human colorectal cancer.
Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO Topics: Carbonic Anhydrase Inhibitors; Carbonic Anhydrase IX; Colorectal Neoplasms; Humans; Molecular Docking Simulation; Molecular Structure; Structure-Activity Relationship; Sulfonamides | 2023 |