u-100480 has been researched along with Tuberculosis--Pulmonary* in 6 studies
1 trial(s) available for u-100480 and Tuberculosis--Pulmonary
Article | Year |
---|---|
Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis.
Sutezolid (PNU-100480) is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients.. Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25) or 1200 mg QD (N = 25), or standard 4-drug therapy (N = 9) for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA) were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA) inoculated with M. tuberculosis H37Rv.. All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI) for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14%) had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury.. The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted.. ClinicalTrials.gov NCT01225640. Topics: Adult; Alanine Transaminase; Animals; Blood Bactericidal Activity; Colony Count, Microbial; Female; Humans; Male; Mice; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Oxazolidinones; Sputum; Tuberculosis, Pulmonary | 2014 |
5 other study(ies) available for u-100480 and Tuberculosis--Pulmonary
Article | Year |
---|---|
Oxazolidinones are promising candidates for the treatment of Topics: Antitubercular Agents; Base Sequence; Binding Sites; Chloramphenicol; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Humans; Linezolid; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Oxazolidinones; Protein Synthesis Inhibitors; Ribosomal Protein L3; Ribosomal Proteins; RNA, Ribosomal, 23S; Sequence Analysis, DNA; Tuberculosis, Pulmonary | 2017 |
Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis.
New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB. Topics: Animals; Antitubercular Agents; Bacterial Load; Diarylquinolines; Disease Models, Animal; Drug Administration Schedule; Drug Combinations; Drug Resistance, Multiple, Bacterial; Drug Synergism; Female; Linezolid; Lung; Mice; Mice, Inbred BALB C; Mycobacterium tuberculosis; Nitroimidazoles; Organophosphates; Oxazoles; Oxazolidinones; Pyrazinamide; Time Factors; Treatment Outcome; Tuberculosis, Pulmonary | 2016 |
To be or not to be exclusive: the sutezolid story.
Topics: Antitubercular Agents; Drug Costs; Drug Industry; Health Services Accessibility; Humans; Intellectual Property; Oxazolidinones; Tuberculosis, Pulmonary | 2016 |
Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis.
Sutezolid (PNU-100480 [U-480]) is an oxazolidinone antimicrobial being developed for the treatment of tuberculosis. An active sulfoxide metabolite (PNU-101603 [U-603]), which reaches concentrations in plasma several times those of the parent, has been reported to drive the killing of extracellular Mycobacterium tuberculosis by sutezolid in hollow-fiber culture. However, the relative contributions of the parent and metabolite against intracellular M. tuberculosis in vivo are not fully understood. The relationships between the plasma concentrations of U-480 and U-603 and intracellular whole-blood bactericidal activity (WBA) in ex vivo cultures were examined using a direct competitive population pharmacokinetic (PK)/pharmacodynamic 4-parameter sigmoid model. The data set included 690 PK determinations and 345 WBA determinations from 50 tuberculosis patients enrolled in a phase 2a sutezolid trial. The model parameters were solved iteratively. The median U-603/U-480 concentration ratio was 7.1 (range, 1 to 28). The apparent 50% inhibitory concentration of U-603 for intracellular M. tuberculosis was 17-fold greater than that of U-480 (90% confidence interval [CI], 9.9- to 53-fold). Model parameters were used to simulate in vivo activity after oral dosing with sutezolid at 600 mg twice a day (BID) and 1,200 mg once a day (QD). Divided dosing resulted in greater cumulative activity (-0.269 log10 per day; 90% CI, -0.237 to -0.293 log10 per day) than single daily dosing (-0.186 log10 per day; 90% CI, -0.160 to -0.208 log10 per day). U-480 accounted for 84% and 78% of the activity for BID and QD dosing, respectively, despite the higher concentrations of U-603. Killing of intracellular M. tuberculosis by orally administered sutezolid is mainly due to the activity of the parent compound. Taken together with the findings of other studies in the hollow-fiber model, these findings suggest that sutezolid and its metabolite act on different mycobacterial subpopulations. Topics: Adolescent; Adult; Aged; Antitubercular Agents; Female; Humans; Male; Microbial Sensitivity Tests; Middle Aged; Models, Statistical; Mycobacterium tuberculosis; Oxazolidinones; Population; Tuberculosis, Pulmonary; Young Adult | 2014 |
Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis.
We recently reported strong bactericidal activity of the oxazolidinone PNU-100480 and its ability to increase the initial bactericidal effect of various combinations of first-line tuberculosis drugs and moxifloxacin in a murine model.. To investigate whether the addition of PNU-100480 to the standard first-line regimen of rifampin, isoniazid, and pyrazinamide could shorten the duration of treatment necessary to prevent relapse after treatment discontinuation.. Following aerosol infection with Mycobacterium tuberculosis H37Rv and a 13-day incubation period, control mice were treated with the first-line regimen while test mice received the same regimen with PNU-100480 or linezolid added for the first 2 or 4 months. Efficacy was assessed on the basis of quantitative cultures of lung homogenates performed monthly during treatment and 3 months after completion of 3, 4, 5, or 6 months of treatment to determine the relapse rate.. After 2 months of treatment, mice receiving PNU-100480 in addition to the first-line regimen had lung CFU counts two orders of magnitude lower than control mice receiving the first-line regimen alone. Relapse rates after 4 months of treatment were 90, 35, and 5% when PNU-100480 was added to the first-line regimen for 0, 2, and 4 months, respectively. When the total treatment duration was 3 months, relapse rates were 85 and 35 to 45% when mice received PNU-100480 for 2 and 3 months, respectively; all control mice remained culture positive at the time of treatment completion with 17 to 72 CFU per lung. Addition of linezolid to the first-line regimen had an antagonistic effect resulting in higher CFU counts and failure to render mice culture-negative in 4 months of treatment.. Together with previous findings, these results confirm that PNU-100480, which is now in Phase I clinical testing, has sterilizing activity in the murine model and suggest that it may be capable of shortening treatment duration for drug-susceptible as well as drug-resistant tuberculosis in humans. Topics: Acetamides; Animals; Antitubercular Agents; Colony-Forming Units Assay; Disease Models, Animal; Drug Administration Schedule; Drug Synergism; Drug Therapy, Combination; Female; Linezolid; Lung; Mice; Mice, Inbred BALB C; Oxazolidinones; Time Factors; Treatment Outcome; Tuberculosis, Pulmonary | 2009 |