u-0126 and Pain

u-0126 has been researched along with Pain* in 26 studies

Other Studies

26 other study(ies) available for u-0126 and Pain

ArticleYear
Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2.
    British journal of pharmacology, 2016, Volume: 173, Issue:4

    Neutrophil elastase plays a crucial role in arthritis. Here, its potential in triggering joint inflammation and pain was assessed, and whether these effects were mediated by proteinase-activated receptor-2 (PAR2).. Neutrophil elastase (5 μg) was injected into the knee joints of mice and changes in blood perfusion, leukocyte kinetics and paw withdrawal threshold were assessed. Similar experiments were performed in animals pretreated with the neutrophil elastase inhibitor sivelestat, the PAR2 antagonist GB83, the p44/42 MAPK inhibitor U0126 and in PAR2 receptor knockout (KO) mice. Neutrophil elastase activity was also evaluated in arthritic joints by fluorescent imaging and sivelestat was assessed for anti-inflammatory and analgesic properties.. Intra-articular injection of neutrophil elastase caused an increase in blood perfusion, leukocyte kinetics and a decrease in paw withdrawal threshold. Sivelestat treatment suppressed this effect. The PAR2 antagonist GB83 reversed neutrophil elastase-induced synovitis and pain and these responses were also attenuated in PAR2 KO mice. The MAPK inhibitor U0126 also blocked neutrophil elastase-induced inflammation and pain. Active neutrophil elastase was increased in acutely inflamed knees as shown by an activatable fluorescent probe. Sivelestat appeared to reduce neutrophil elastase activity, but had only a moderate anti-inflammatory effect in this model.. Neutrophil elastase induced acute inflammation and pain in knee joints of mice. These changes are PAR2-dependent and appear to involve activation of a p44/42 MAPK pathway. Blocking neutrophil elastase, PAR2 and p44/42 MAPK activity can reduce inflammation and pain, suggesting their utility as therapeutic targets.

    Topics: Animals; Butadienes; Inflammation; Knee Joint; Leukocyte Elastase; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitriles; Pain; Receptor, PAR-2

2016
ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity.
    PloS one, 2014, Volume: 9, Issue:1

    Cyclin-dependent kinase 5 is a proline-directed serine/threonine kinase and its activity participates in the regulation of nociceptive signaling. Like binding with the activators (P35 or P25), the phosphorylation of Cdk5 plays a critical role in Cdk5 activation. However, it is still unclear whether Cdk5 phosphorylation (p-Cdk5) contributes to pain hyperalgesia. The aim of our current study was to identify the roles of p-Cdk5 and its upstream regulator in response to peripheral inflammation. Complete Freund's adjuvant (CFA) injection induced acute peripheral inflammation and heat hyperalgesia, which was accompanied by sustained increases in phospho-ERK1/2 (p-ERK1/2) and phospho-Cdk5(S159) (p-Cdk5(S159)) in the spinal cord dorsal horn (SCDH). CFA-induced p-ERK primarily colocalized with p-Cdk5(S159) in superficial dorsal horn neurons. Levels in p-ERK and p-Cdk5 were also increased in the 2(nd) phase of hyperalgesia induced by formalin injection, which can produce acute and tonic inflammatory pain. MAP kinase kinase inhibitor U0126 intrathecal delivery significantly suppressed the elevation of p-Cdk5(S159), Cdk5 activity and pain response behavior (Heat hyperalgesia, Spontaneous flinches) induced by CFA or formalin injection. Cdk5 inhibitor roscovitine intrathecal administration also suppressed CFA-induced heat hyperalgesia and Cdk5 phosphorylation, but did not attenuate ERK activation. All these findings suggested that p-Cdk5(S159) regulated by ERK pathway activity may be a critical mechanism involved in the activation of Cdk5 in nociceptive spinal neurons contributes to peripheral inflammatory pain hypersensitivity.

    Topics: Animals; Butadienes; Cyclin-Dependent Kinase 5; Enzyme Activation; Fixatives; Formaldehyde; Hyperalgesia; Male; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 3; Neurons; Nitriles; Pain; Phosphorylation; Protein Kinase Inhibitors; Purines; Rats; Rats, Sprague-Dawley; Roscovitine

2014
From peripheral to central: the role of ERK signaling pathway in acupuncture analgesia.
    The journal of pain, 2014, Volume: 15, Issue:5

    Despite accumulating evidence of the clinical effectiveness of acupuncture, its mechanism remains largely unclear. We assume that molecular signaling around the acupuncture needled area is essential for initiating the effect of acupuncture. To determine possible bio-candidates involved in the mechanisms of acupuncture and investigate the role of such bio-candidates in the analgesic effects of acupuncture, we conducted 2 stepwise experiments. First, a genome-wide microarray of the isolated skin layer at the GB34-equivalent acupoint of C57BL/6 mice 1 hour after acupuncture found that a total of 236 genes had changed and that extracellular signal-regulated kinase (ERK) activation was the most prominent bio-candidate. Second, in mouse pain models using formalin and complete Freund adjuvant, we found that acupuncture attenuated the nociceptive behavior and the mechanical allodynia; these effects were blocked when ERK cascade was interrupted by the mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) inhibitor U0126 (.8 μg/μL). Based on these results, we suggest that ERK phosphorylation following acupuncture needling is a biochemical hallmark initiating the effect of acupuncture including analgesia.. This article presents the novel evidence of the local molecular signaling in acupuncture analgesia by demonstrating that ERK activation in the skin layer contributes to the analgesic effect of acupuncture in a mouse pain model. This work improves our understanding of the scientific basis underlying acupuncture analgesia.

    Topics: Acupuncture Analgesia; Animals; Blotting, Western; Butadienes; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Formaldehyde; Freund's Adjuvant; Gene Expression; Male; MAP Kinase Signaling System; Mice, Inbred C57BL; Nitriles; Oligonucleotide Array Sequence Analysis; Pain; Pain Management; Pain Threshold; Phosphorylation; Reverse Transcriptase Polymerase Chain Reaction; Skin Physiological Phenomena; Time Factors

2014
Electroacupuncture mediates extracellular signal-regulated kinase 1/2 pathways in the spinal cord of rats with inflammatory pain.
    BMC complementary and alternative medicine, 2014, Aug-04, Volume: 14

    Activation of extracellular signal-regulated kinase1/2 (ERK1/2) in dorsal horn of the spinal cord by peripheral inflammation is contributed to inflammatory pain hypersensitivity. Although electroacupuncture (EA) has been widely used to alleviate various kinds of pain, the underlying mechanism of EA analgesia requires further investigation. This study investigated the relationship between EA-induced analgesia and ERK signaling involved in pain hypersensitivity.. The rats were randomly divided into control, model, EA and sham EA groups. Inflammatory pain model was induced by injecting of 100 μl Complete Freund's adjuvant (CFA) into the plantar surface of a hind paw. Rats in the EA group were treatment with EA (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1-2 mA) at 5.5 h, 24.5 h and 48.5 h. Paw withdrawal thresholds (PWTs) were measured before modeling and at 5 h, 6 h, 25 h and 49 h after CFA injection. Rats were killed and ipsilateral side of the lumbar spinal cords were harvested for detecting the expressions of p-ERK1/2, Elk1, COX-2, NK-1 and CREB by immunohistochemistry, real-time PCR, western blot analysis and EMSA. Finally, the analgesic effect of EA plus U0126, a MEK (ERK kinase) inhibitor, on CFA rats was examined.. Inflammatory pain was induced in rats by hindpaw injection of CFA and significantly increased phospho-ERK1/2 positive cells and protein levels of p-ERK1/2 in the ipsilateral spinal cord dorsal horn (SCDH). CFA up-regulated of cyclooxygenase-2 (COX-2) mRNA and protein expression at 6 h after injection and neurokinin-1 receptor (NK-1) expression at 49 h post-injection, in the SCDH. EA, applied to Zusanli (ST36) and Kunlun (BL60), remarkably increased the pain thresholds of CFA injected rats, significantly suppressed ERK1/2 activation and COX-2 protein expression after a single treatment, and decreased NK-1 mRNA and protein expression at 49 h. EA decreased the DNA binding activity of cAMP response element binding protein (CREB), a downstream transcription factor of ERK1/2, at 49 h after CFA injection. Moreover, EA and U0126 synergistically inhibited CFA-induced allodynia.. The present study suggests that EA produces analgesic effect by preventing the activation of ERK1/2-COX-2 pathway and ERK1/2-CREB-NK-1 pathway in CFA rats.

    Topics: Animals; Butadienes; Electroacupuncture; Hyperalgesia; Male; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitriles; Pain; Pain Management; Random Allocation; Rats; Rats, Sprague-Dawley; Spinal Cord

2014
TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor.
    Pain, 2014, Volume: 155, Issue:12

    Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.

    Topics: Animals; Butadienes; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fixatives; Formaldehyde; Keratinocytes; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Morpholines; Neurons; Nitriles; Pain; Pyrroles; Trigeminal Ganglion; TRPV Cation Channels; Ubiquitin Thiolesterase; Vibrissae

2014
Activation of ERK signaling in rostral ventromedial medulla is dependent on afferent input from dorsal column pathway and contributes to acetic acid-induced visceral nociception.
    Neurochemistry international, 2013, Volume: 63, Issue:5

    Several lines of evidence from both animal and clinical studies have demonstrated that dorsal column (DC) pathway plays a critical role in visceral pain transmission from the spinal cord to supraspinal center. The descending pain modulation pathway from the rostral ventromedial medulla (RVM) area has been implicated in visceral nociceptive neurotransmission. Previous studies have demonstrated that the multiple protein kinase signaling transduction cascades in the RVM area contribute to the descending facilitation of inflammatory pain and neuropathic pain. However, whether these signaling transduction pathways in the RVM area are triggered by the afferent visceral input from the DC pathway during acute visceral pain remains elusive. Here, we have tested the hypothesis that the afferent visceral stimuli from the DC pathway might induce the activation of extracellular signal-regulated protein kinase (ERK) signaling in the RVM area and contribute to the descending facilitation of neurotransmission in a rat model of visceral pain. Our results showed that acetic acid-induced visceral nociception produced a persistent activation of ERK in the RVM area and a microinjection of a mitogen-activated ERK kinase (MEK) inhibitor, U0126, into the RVM area significantly inhibited the visceral noxious stimulation-induced behaviors in rats. A microinjection of lidocaine into the nucleus gracilis (NG) also inhibited the activation of ERK in the RVM area. The current study indicates that activated ERK signaling pathway in the RVM area is dependent on afferent input from dorsal column pathway and may contribute to acetic acid-induced visceral nociception.

    Topics: Acetic Acid; Afferent Pathways; Anesthetics, Local; Animals; Butadienes; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Lidocaine; Male; Medulla Oblongata; Microinjections; Nitriles; Pain; Rats; Rats, Sprague-Dawley; Signal Transduction; Viscera

2013
The antinociceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models.
    The Journal of pharmacology and experimental therapeutics, 2013, Volume: 344, Issue:1

    The α7 nicotinic acetylcholine receptor (nAChR) subtype is abundantly expressed in the central nervous system and in the periphery. Recent evidence suggests that α7 nAChR subtypes, which can be activated by an endogenous cholinergic tone, comprising acetylcholine and the α7 nAChR agonist choline, play an important role in subchronic pain and inflammation. This study's objective was to test whether α7 nAChR positive allosteric modulators (PAMs) produce antinociception in in vivo mouse models of acute and persistent pain. Testing type I [N-(5-chloro-2-hydroxyphenyl)-N'-[2-chloro-5-(trifluoromethyl)phenyl] (NS1738)] and type II [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl) (PNU-120596)] α7 nAChR PAMs in acute and persistent pain, we found that, although neither reduced acute thermal pain, only PNU-120596 dose-dependently attenuated paw-licking behavior in the formalin test. The long-acting effect of PNU-120596 in this test was in discordance with its pharmacokinetic profile in mice, which suggests the involvement of postreceptor signaling mechanisms. Our results with selective mitogen-activated protein kinase kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene monoethanolate (U0126) argues for an important role of extracellular signal-regulated kinase-1/2 pathways activation in PNU-120596's antinociceptive effects. The α7 antagonist MLA, administered intrathecally, reversed PNU-120596's effects, confirming PNU-120596's action, in part, through central α7 nAChRs. Importantly, tolerance to PNU-120596 was not developed after subchronic treatment of the drug. Surprisingly, PNU-120596's antinociceptive effects were blocked by NS1738. Our results indicate that type II α7 nAChR PAM PNU-120596, but not type I α7 nAChR PAM NS1738, shows significant antinociception effects in persistent pain models in mice.

    Topics: alpha7 Nicotinic Acetylcholine Receptor; Analgesics; Animals; Butadienes; Cholinergic Agents; Dose-Response Relationship, Drug; Formaldehyde; Hot Temperature; Injections, Spinal; Isoxazoles; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Motor Activity; Nitriles; Pain; Pain Measurement; Phenylurea Compounds; Physical Stimulation; Postural Balance; Reaction Time; Receptors, Nicotinic

2013
Early intervention of ERK activation in the spinal cord can block initiation of peripheral nerve injury-induced neuropathic pain in rats.
    Sheng li xue bao : [Acta physiologica Sinica], 2011, Apr-25, Volume: 63, Issue:2

    The present study is to investigate whether the extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) signaling pathway contributes to the initiation of chronic constriction injury (CCI)-induced neuropathic pain in rats. Mechanical allodynia was assessed by measuring the hindpaw withdrawal threshold in response to a calibrated series of von Frey hairs. Thermal hyperalgesia was assessed by measuring the latency of paw withdrawal in response to a radiant heat source. The expressions of phosphor-ERK (pERK) and phosphor-CREB (pCREB) were examined using Western blot analysis and immunohistochemistry. An early robust increase in the expression of pERK on the spinal cords ipsilateral to injury was observed on day 1 after CCI, when the CCI-induced behavioral hypersensitivity had not developed yet. Moreover, the upregulation of pERK expression in ipsilateral spinal cord was associated with the increase in pCREB expression in bilateral spinal cord. Intrathecal administration of mitogen-activated protein kinase kinase (MEK) inhibitor U0126 before CCI can efficiently block and delay the CCI-induced mechanical allodynia and thermal hyperalgesia. These data suggest that activation of ERK and CREB in the spinal cord contributes to the initiation of peripheral nerve injury-induced pain hypersensitivity, and an early intervention strategy should be proposed.

    Topics: Animals; Butadienes; Cyclic AMP Response Element-Binding Protein; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Hyperalgesia; Male; Nitriles; Pain; Peripheral Nerve Injuries; Rats; Rats, Sprague-Dawley; Sciatic Neuropathy; Spinal Cord

2011
Cancer-induced bone pain sequentially activates the ERK/MAPK pathway in different cell types in the rat spinal cord.
    Molecular pain, 2011, Jul-01, Volume: 7

    Previous studies have demonstrates that, after nerve injury, extracellular signal-regulated protein kinase (ERK) activation in the spinal cord-initially in neurons, then microglia, and finally astrocytes. In addition, phosphorylation of ERK (p-ERK) contributes to nociceptive responses following inflammation and/or nerve injury. However, the role of spinal cells and the ERK/MAPK pathway in cancer-induced bone pain (CIBP) remains poorly understood. The present study analyzed activation of spinal cells and the ERK/MAPK pathway in a rat model of bone cancer pain.. A Sprague Dawley rat model of bone cancer pain was established and the model was evaluated by a series of tests. Moreover, fluorocitrate (reversible glial metabolic inhibitor) and U0126 (a MEK inhibitor) was administered intrathecally. Western blots and double immunofluorescence were used to detect the expression and location of phosphorylation of ERK (p-ERK). Our studies on pain behavior show that the time between day 6 and day 18 is a reasonable period ("time window" as the remaining stages) to investigate bone cancer pain mechanisms and to research analgesic drugs. Double-labeling immunofluorescence revealed that p-ERK was sequentially expressed in neurons, microglia, and astrocytes in the L4-5 superficial spinal cord following inoculation of Walker 256 cells. Phosphorylation of ERK (p-ERK) and the transcription factor cAMP response element-binding protein (p-CREB) increased in the spinal cord of CIBP rats, which was attenuated by intrathecal injection of fluorocitrate or U0126.. The ERK inhibitors could have a useful role in CIBP management, because the same target is expressed in various cells at different times.

    Topics: Analgesics; Animals; Bone Neoplasms; Butadienes; Citrates; Cyclic AMP Response Element-Binding Protein; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Hyperalgesia; Injections, Spinal; MAP Kinase Signaling System; Nitriles; Organ Specificity; Pain; Phosphorylation; Radiography; Rats; Rats, Sprague-Dawley; Spinal Cord; Tibia

2011
EphrinBs/EphBs signaling is involved in modulation of spinal nociceptive processing through a mitogen-activated protein kinases-dependent mechanism.
    Anesthesiology, 2010, Volume: 112, Issue:5

    Our previous studies have demonstrated that EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. The aim of this study was to further investigate whether mitogen-activated protein kinases (MAPKs), as the downstream effectors, participate in modulation of spinal nociceptive information related to ephrinBs/EphBs.. Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filaments test. Immunofluorescence staining was used to detect the expression of p-MAPKs and of p-MAPKs/neuronal nuclei, or p-MAPKs/glial fibrillary acidic protein double label. C-Fos expression was determined by immunohistochemistry. The expression of p-MAPKs was also determined by Western blot assay.. Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal p-MAPKs and c-Fos expression. Immunofluorescence staining revealed that p-MAPKs colocalized with the neuronal marker (neuronal nuclei) and the astrocyte marker (glial fibrillary acidic protein). Inhibition of MAPKs prevented and reversed pain behaviors and the increase of spinal c-Fos expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. Furthermore, pretreatment with MK-801, an N-methyl-d-aspartate receptor antagonist, prevented behavioral hyperalgesia and activation of spinal MAPKs induced by intrathecal injection of ephrinB1-Fc.. These results demonstrated that activation of MAPKs contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.

    Topics: Animals; Butadienes; Ephrin-B1; Hyperalgesia; Inflammation Mediators; Injections, Spinal; Male; MAP Kinase Signaling System; Mice; Mitogen-Activated Protein Kinases; Nitriles; Pain; Pain Measurement; Receptors, Eph Family

2010
Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010, Jun-16, Volume: 30, Issue:24

    The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA.

    Topics: Amygdala; Analysis of Variance; Animals; Butadienes; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Formaldehyde; Functional Laterality; Gene Expression Regulation; Green Fluorescent Proteins; Hyperalgesia; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinase 3; Nitriles; Pain; Pain Measurement; Pyridines; Receptors, Glucocorticoid; Receptors, Kainic Acid

2010
Spinal ERK activation via NO-cGMP pathway contributes to nociceptive behavior induced by morphine-3-glucuronide.
    Biochemical pharmacology, 2009, Oct-15, Volume: 78, Issue:8

    Intrathecal (i.t.) injection of morphine-3-glucuronide (M3G), a major metabolite of morphine without analgesic actions, produces a severe hindlimb scratching followed by biting and licking in mice. The pain-related behavior evoked by M3G was inhibited dose-dependently by i.t. co-administration of tachykinin NK(1) receptor antagonists, sendide, [D-Phe(7), D-His(9)] substance P(6-11), CP-99994 or RP-67580 and i.t. pretreatment with antiserum against substance P. The competitive NMDA receptor antagonists, D-APV and CPP, the NMDA ion-channel blocker, MK-801 or the competitive antagonist of the polyamine recognition site of NMDA receptor ion-channel complex, ifenprodil, produced inhibitory effects on i.t. M3G-evoked nociceptive response. The NO-cGMP-PKG pathway, which involves the extracellular signal-regulated kinase (ERK), has been implicated as mediators of plasticity in several pain models. Here, we investigated whether M3G could influence the ERK activation in the NO-cGMP-PKG pathway. The i.t. injection of M3G evoked a definite activation of ERK in the lumbar dorsal spinal cord, which was prevented dose-dependently by U0126, a MAP kinase-ERK inhibitor. The selective nNOS inhibitor N(omega)-propyl-l-arginine, the selective iNOS inhibitor W1400, the soluble guanylate cyclase inhibitor ODQ and the PKG inhibitor KT-5823 inhibited dose-dependently the nociceptive response to i.t. M3G. In western blotting analysis, inhibiting M3G-induced nociceptive response using these inhibitors resulted in a significant blockade of ERK activation induced by M3G in the spinal cord. Taken together, these results suggest that activation of the spinal ERK signaling in the NO-cGMP-PKG pathway contributes to i.t. M3G-evoked nociceptive response.

    Topics: Analgesics; Animals; Behavior, Animal; Butadienes; Central Nervous System Stimulants; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Injections, Spinal; Isoindoles; Male; Mice; Mice, Inbred Strains; Morphine Derivatives; Nitric Oxide; Nitriles; Nociceptors; Pain; Peptide Fragments; Piperidines; Pyrrolidonecarboxylic Acid; Receptors, Tachykinin; Specific Pathogen-Free Organisms; Spinal Cord; Stereoisomerism; Substance P

2009
Differential contribution of spinal mitogen-activated protein kinases to the phase of long-lasting allodynia evoked by intrathecal administration of ATP in rats.
    Biological & pharmaceutical bulletin, 2008, Volume: 31, Issue:6

    Several lines of evidence suggest that activation of spinal mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) and p38 MAPK, contributes to the induction and maintenance of chronic pain. We recently reported that an intrathecal (i.t.) administration of ATP evoked tactile allodynia, which lasted more than 1 week in rats. The long-lasting allodynia was induced by activation of spinal P2X 2/3-receptors, and the induction and early phase of maintenance, but not the late phase, was mediated, at least in part, by the activation of spinal glial cells. In this study, we examined the involvement of spinal ERK and p38 MAPK in each phase of i.t. ATP-evoked long-lasting allodynia. I.t. administration of ATP (100 nmol) markedly increased phosphorylated ERK, which peaked at 1-8 h before gradually decreasing to a level that was sustained until 7 d after administration. In contrast, only a slight increase in phosphorylated p38 MAPK was observed. Consistent with the increased phosphorylation of MAPKs, the ERK kinase MEK inhibitor, U0126 (3 nmol), attenuated the induction phase (co-administration with ATP) and early maintenance phase (1-d post-ATP administration) of the i.t. ATP-evoked allodynia, but not the late maintenance phase (7-d post-ATP administration), while the p38 MAPK inhibitor, SB203580 (10 microg), had little effect. These results suggest that the induction phase and early maintenance phase, but not the late maintenance phase of long-lasting allodynia is mediated by the activation of ERK, rather than by the activation of p38 MAPK, in the spinal cord. These findings are informative for elucidating the mechanisms underlying the pathogenesis of chronic pain.

    Topics: Adenosine Triphosphate; Animals; Blotting, Western; Butadienes; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Imidazoles; Injections, Spinal; Male; Mitogen-Activated Protein Kinases; Nitriles; p38 Mitogen-Activated Protein Kinases; Pain; Pain Measurement; Phosphorylation; Pyridines; Rats; Rats, Sprague-Dawley; Spinal Cord

2008
Hemispheric lateralization of a molecular signal for pain modulation in the amygdala.
    Molecular pain, 2008, Jun-23, Volume: 4

    The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing.

    Topics: Amygdala; Animals; Behavior, Animal; Butadienes; Dominance, Cerebral; Extracellular Signal-Regulated MAP Kinases; Male; Mice; Nitriles; Pain; Pain Measurement; Signal Transduction

2008
PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior.
    Molecular pain, 2008, Jul-16, Volume: 4

    The laterocapsular division of the central nucleus of the amygdala (CeLC) has emerged as an important site of pain-related plasticity and pain modulation. Glutamate and neuropeptide receptors in the CeLC contribute to synaptic and behavioral changes in the arthritis pain model, but the intracellular signaling pathways remain to be determined. This study addressed the role of PKA, PKC, and ERK in the CeLC. Adult male Sprague-Dawley rats were used in all experiments. Whole-cell patch-clamp recordings of CeLC neurons were made in brain slices from normal rats and from rats with a kaolin/carrageenan-induced monoarthritis in the knee (6 h postinduction). Membrane-permeable inhibitors of PKA (KT5720, 1 microM; cAMPS-Rp, 10 microM) and ERK (U0126, 1 microM) activation inhibited synaptic plasticity in slices from arthritic rats but had no effect on normal transmission in control slices. A PKC inhibitor (GF109203x, 1 microM) and an inactive structural analogue of U0126 (U0124, 1 microM) had no effect. The NMDA receptor-mediated synaptic component was inhibited by KT5720 or U0126; their combined application had additive effects. U0126 did not inhibit synaptic facilitation by forskolin-induced PKA-activation. Administration of KT5720 (100 microM, concentration in microdialysis probe) or U0126 (100 microM) into the CeLC, but not striatum (placement control), inhibited audible and ultrasonic vocalizations and spinal reflexes of arthritic rats but had no effect in normal animals. GF109203x (100 microM) and U0124 (100 microM) did not affect pain behavior. The data suggest that in the amygdala PKA and ERK, but not PKC, contribute to pain-related synaptic facilitation and behavior by increasing NMDA receptor function through independent signaling pathways.

    Topics: Amygdala; Animals; Arthritis; Behavior; Butadienes; Carbazoles; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Indoles; Male; Maleimides; Neuronal Plasticity; Neurons; Nitriles; Pain; Protein Kinase C; Protein Kinase Inhibitors; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Thionucleotides

2008
Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom.
    Toxicon : official journal of the International Society on Toxinology, 2008, Volume: 51, Issue:6

    It has been demonstrated that spontaneous nociceptive behaviors, cutaneous hyperalgesia and paw edema can be induced by intraplantar injection of scorpion Buthus martensi Karch (BmK) venom in rats. In the present study, activation of spinal extracellular signal-regulated kinase (ERK) signaling pathway and its contribution to pain-related responses induced by scorpion BmK venom were investigated. It was found that ERK was activated not only in the superficial layers but also in deep layers of L4-L5 spinal cord dorsal horn, which started at 2 min, peaked at 30-60 min and almost disappeared at 4h following intraplantar injection of BmK venom. Intrathecal injection of U0126 (0.1, 1.0 and 10 microg), a widely used specific MAP kinase kinase (MEK) inhibitor, suppressed spontaneous nociceptive responses and reduced primary heat hyperalgesia and bilateral mechanical hyperalgesia induced by BmK venom. In addition, BmK venom-induced spinal c-Fos expression could be inhibited by U0126 dose-dependently. Intrathecal delivery of NMDA receptor antagonist (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) could partially inhibit activation of spinal ERK induced by BmK venom at 30 min. Thus, activation of ERK in spinal cord dorsal horn, partially mediated by NMDA and non-NMDA receptor, potentially contributes to BmK venom-induced pain-related behaviors.

    Topics: Animals; Butadienes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Hyperalgesia; Immunochemistry; Male; Mitogen-Activated Protein Kinases; Nitriles; Pain; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Scorpion Venoms; Spinal Cord; Time Factors

2008
Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2007, Feb-14, Volume: 27, Issue:7

    The amygdala has been proposed to serve as a neural center for the modulation of pain perception. Numerous anatomical and behavioral studies demonstrate that exogenous manipulations of the amygdala (i.e., lesions, drug infusions) modulate behavioral responses to acute noxious stimuli; however, little is known about the endogenous molecular changes in the amygdala that contribute to alterations in nociceptive processing during persistent noxious stimuli that resemble pathological pain conditions. In the present study, we demonstrate that endogenous molecular changes in the amygdala play a crucial role in modulating long-lasting peripheral hypersensitivity associated with persistent inflammation and we further identify the extracellular signal-regulated kinase (ERK) as a molecular substrate underlying this behavioral sensitization. Using the formalin test as a mouse model of persistent inflammatory pain, we show that activation of ERK in the amygdala is both necessary for and sufficient to induce long-lasting peripheral hypersensitivity to tactile stimulation. Thus, blockade of inflammation-induced ERK activation in the amygdala significantly reduced long-lasting peripheral hypersensitivity associated with persistent inflammation, and pharmacological activation of ERK in the amygdala induced peripheral hypersensitivity in the absence of inflammation. Importantly, blockade of ERK activation in the amygdala did not affect responses to acute noxious stimuli in the absence of inflammation, indicating that modulation of nociceptive responses by amygdala ERK activation is specific to the persistent inflammatory state. Altogether, our results demonstrate a functional role of the ERK signaling cascade in the amygdala in inflammation-induced peripheral hypersensitivity.

    Topics: Amygdala; Analysis of Variance; Animals; Behavior, Animal; Blotting, Western; Butadienes; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Formaldehyde; Functional Laterality; Immunohistochemistry; Male; Mice; Nitriles; Pain; Pain Measurement; Pain Threshold; Reaction Time; Time Factors

2007
Extracellular signal-regulated kinase (ERK) and nitric oxide synthase mediate intrathecal morphine-induced nociceptive behavior.
    Neuropharmacology, 2007, Volume: 52, Issue:5

    Intrathecal (i.t.) administration of morphine at a high dose of 60nmol into the spinal lumbar space in mice produces a severe hindlimb scratching followed by biting and licking. Nitric oxide (NO) is thought to play an important role in signal transduction pathways that enhance nociceptive transmission in the spinal cord. The present study was designed to determine whether high-dose i.t. morphine could influence the activation of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase in neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) activation. Both 7-NI and TRIM, selective inhibitors of nNOS, resulted in a dose-dependent inhibition of high-dose i.t. morphine-induced behavior. The selective iNOS inhibitor W1400 in relatively large doses inhibited in a non dose-dependent manner. The i.t. injection of morphine evoked a definite activation of ERK in the lumbar dorsal spinal cord. Behavioral experiments showed that U0126 (0.5-2.5nmol), a MAP kinase-ERK inhibitor, dose-dependently attenuated the behavioral response to i.t. morphine. In mice treated with high-dose morphine, 7-NI was very effective in blocking ERK activation, whereas W1400 had no effect. Taken together, these results suggest that the behavioral response to high-dose i.t. morphine may be triggered by the nNOS-ERK pathway in the dorsal spinal cord.

    Topics: Amidines; Analgesics, Opioid; Animals; Behavior, Animal; Benzylamines; Blotting, Western; Butadienes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Indazoles; Injections, Spinal; Male; Mice; Morphine; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitriles; Nociceptors; Pain; Signal Transduction

2007
Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK).
    Molecular pain, 2006, Jan-16, Volume: 2

    Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs) as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK) mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain.. Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 - 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls.. Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia.

    Topics: Animals; Behavior, Animal; Butadienes; Enzyme Activation; Formaldehyde; Genes, Dominant; Hot Temperature; Hyperalgesia; Inflammation; Mice; Mice, Transgenic; Mitogen-Activated Protein Kinase Kinases; Neurons; Nitriles; Pain; Potassium Channels

2006
Loose ligation of the sciatic nerve in rats elicits transient up-regulation of Homer1a gene expression in the spinal dorsal horn.
    Neuroscience letters, 2006, May-08, Volume: 398, Issue:3

    Changes in the expression of many genes underlie injury-elicited plasticity in the spinal dorsal horn. Homer1 is a recently identified gene that appears to play a critical role in the expression of synaptic plasticity in several brain regions, including the hippocampus. In this study we investigated the early consequences of chronic constriction injury of the sciatic nerve on Homer1 gene expression in the spinal dorsal horn. Significant increases in Homer1a mRNA levels in the ipsilateral dorsal horn were detected at 4h post-ligation, and these levels remained elevated at 8h before returning to baseline values by 24h after the ligation. In contrast, the levels of Homer1b/c mRNA did not change at any of these selected post-ligation times. The ligation-associated induction of Homer1a was dependent on activation of NMDA receptors and the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway. The non-competitive NMDA-receptor antagonist, MK-801, and a specific inhibitor of the ERK1/2 pathway, U0126, significantly attenuated the injury-elicited increases in Homer1a mRNA when compared to saline-treated animals. These data provide the first evidence for a potential role of Homer1a in peripheral nerve injury-elicited plasticity in the spinal dorsal horn. These data also imply that the early and transient up-regulation of Homer1a gene expression may be an important contributor to the eventual development of neuropathic pain.

    Topics: Animals; Butadienes; Carrier Proteins; Constriction, Pathologic; Dizocilpine Maleate; Homer Scaffolding Proteins; Ligation; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neuronal Plasticity; Nitriles; Pain; Peripheral Nervous System Diseases; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Sciatic Nerve; Up-Regulation

2006
The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint.
    Pain, 2006, Volume: 123, Issue:1-2

    Pain during inflammatory joint diseases is enhanced by the generation of hypersensitivity in nociceptive neurons in the peripheral nervous system. To explore the signaling mechanisms of mechanical hypersensitivity during joint inflammation, experimental arthritis was induced by injection of complete Freund's adjuvant (CFA) into the synovial cavity of rat knee joints. As a pain index, the struggle threshold of the knee extension angle was measured. In rats with arthritis, the phosphorylation of extracellular signal-regulated kinase (ERK), induced by passive joint movement, increased significantly in dorsal root ganglion (DRG) neurons innervating the knee joint compared to the naïve rats that received the same movement. The intrathecal injection of a MEK inhibitor, U0126, reduced the phosphorylation of ERK in DRG neurons and alleviated the struggle behavior elicited by the passive movement of the joint. In addition, the injection of U0126 into the joint also reduced the struggle behavior. These findings indicate that the ERK signaling is activated in both cell bodies in DRG neurons and peripheral nerve fibers and may be involved in the mechanical sensitivity of the inflamed joint. Furthermore, the phosphorylated ERK-positive neurons co-expressed the P2X3 receptor, and the injection of TNP-ATP, which antagonizes P2X receptors, into the inflamed joint reduced the phosphorylated ERK and the struggle behavior. Thus, it is suggested that the activation of the P2X3 receptor is involved in the phosphorylation of ERK in DRG neurons and the mechanical hypersensitivity of the inflamed knee joint.

    Topics: Adenosine Triphosphate; Animals; Arthritis, Experimental; Axonal Transport; Butadienes; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Freund's Adjuvant; Ganglia, Spinal; Hyperalgesia; Injections, Intra-Articular; Injections, Spinal; Male; Neurons, Afferent; Nitriles; Osteoarthritis, Knee; Pain; Phosphorylation; Protein Processing, Post-Translational; Purinergic P2 Receptor Antagonists; Range of Motion, Articular; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2; Receptors, Purinergic P2X3; Signal Transduction; Stifle; Stress, Mechanical

2006
Activation of extracellular signal-regulated protein kinase in the dorsal root ganglion following inflammation near the nerve cell body.
    Neuroscience, 2004, Volume: 126, Issue:4

    Inflammation of the primary afferent proximal to the dorsal root ganglion (DRG) and the DRG itself is known to produce radicular pain. Here, we examined pain-related behaviors and the activation of extracellular signal-regulated protein kinase (ERK) in the DRG after inflammation near the DRG somata. Inflammation of the L4/5 nerve roots and DRG induced by complete Freund's adjuvant (CFA) produced mechanical allodynia on the ipsilateral hindpaw and induced an increase in the phosphorylation of ERK, mainly in tyrosine kinase (trk) A-expressing small- and medium-size neurons. This CFA-induced increase in ERK phosphorylation was mediated through trk receptors, because intrathecal treatment with the tyrosine kinase inhibitor, K252a, reduced the activation of ERK. On the other hand, an increase in brain-derived neurotrophic factor (BDNF) mRNA/protein in the DRG concomitant with the ERK activation was also observed. Furthermore, we found that nerve growth factor (NGF) injection directly into the L4/5 nerve roots and DRG produced mechanical allodynia, and an increase in the phosphorylation of ERK and BDNF expression in the DRG, but the mitogen-activated protein kinase (MAPK) kinase1/2 inhibitor, U0126, inhibited the effects induced by NGF. Therefore, we suggest that after inflammation near the cell body, NGF synthesized within the nerve root and DRG induces BDNF expression through trkA receptors and intracellular ERK-MAPK. The activation of MAPK in the primary afferents may be involved in the pathophysiological mechanisms of inflammation-induced radiculopathy and MAPK pathways in the primary afferents may be potential targets for pharmacological intervention for neuropathic pain produced by inflammation near the DRG somata.

    Topics: Animals; Behavior, Animal; Blotting, Western; Brain-Derived Neurotrophic Factor; Butadienes; Carbazoles; Cell Count; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Freund's Adjuvant; Functional Laterality; Ganglia, Spinal; Gene Expression Regulation; Immunohistochemistry; In Situ Hybridization; Indole Alkaloids; Male; Mitogen-Activated Protein Kinases; Nerve Growth Factor; Neurons; Nitriles; Pain; Pain Measurement; Phosphorylation; Radiculopathy; Rats; Rats, Sprague-Dawley; Reaction Time; Spinal Nerve Roots; Time Factors

2004
Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation.
    Pain, 2004, Volume: 111, Issue:1-2

    Group I metabotropic glutamate receptors (mGluRs) and their downstream signaling pathways, which involve the extracellular signal-regulated kinases (ERKs), have been implicated as mediators of plasticity in several pain models. In this study, we report that inflammation leads to a long-lasting enhancement of behavioral responses induced by activation of spinal group I mGluRs. Thus, the nocifensive response to intrathecal injection of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG) is significantly potentiated seven days following Complete Freund's Adjuvant (CFA)-induced inflammation of the hind paw. This potentiation is not associated with increased mGlu1 or mGlu5 receptor expression but is associated with increased levels of phosphorylated ERK in dorsal horn neurons. We also tested whether the increased behavioral response to DHPG following inflammation may be explained by enhanced coupling of the group I mGluRs to ERK activation. DHPG-induced ERK phosphorylation in the dorsal horn is not potentiated following inflammation. However, inhibiting ERK activation using a MEK inhibitor, U0126, following inflammation attenuates the intrathecal DHPG-induced behavioral responses to a greater extent than in control animals. The results from this study indicate that persistent ERK activation is required for the enhanced behavioral responses to spinal group I mGluR activation following inflammation and suggest that tonic modulation of ERK activity may underlie a component of central sensitization in dorsal horn neurons.

    Topics: Animals; Animals, Outbred Strains; Behavior, Animal; Butadienes; Enzyme Inhibitors; Freund's Adjuvant; Inflammation; Male; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred ICR; Mitogen-Activated Protein Kinases; Nitriles; Nociceptors; Pain; Posterior Horn Cells; Receptors, Metabotropic Glutamate

2004
Extracellular signaling-regulated kinase-1 and -2 (ERK 1/2) mediate referred hyperalgesia in a murine model of visceral pain.
    Brain research. Molecular brain research, 2003, Aug-19, Volume: 116, Issue:1-2

    We have investigated the role of spinal extracellular signaling-regulated kinase-1 and -2 (ERK1/2) in a model of visceral pain and hyperalgesia induced by intracolonic instillation of irritants in adult mice. Instillation of either capsaicin or mustard oil induced a significant activation of lumbosacral spinal ERK1/2, measured by immunoblot, with a peak 2.4-fold increase over control levels between 45 and 90 min post-treatment. Intracolonic saline did not produce significant activation of lumbosacral spinal ERK1/2, and none of the treatments evoked ERK1/2 activation in thoracic or cervical spinal cord. These studies suggested a preferential nuclear localization, which was explored by subcellular fractionation. Both mustard oil and capsaicin produced a redistribution of phosphorylated ERK1/2 from cytosol into the nucleus that was statistically significant at 45 min after treatment. Spinal ERK1/2 activation with capsaicin treatment correlated with the development of prolonged referred hyperalgesia. The upstream inhibitor of ERK phosphorylation, U0126 (100-400 microg/kg, i.v., 10 min pre-capsaicin), dose-dependently inhibited referred hyperalgesia 3-6 h after capsaicin. Treatment with U0126 did not affect spontaneous pain behavior or colon inflammation. Our data show that ERK activation plays a specific role in maintaining prolonged referred (secondary) hyperalgesia in visceral pain. The time course and subcellular localization of the effects observed suggest that ERK is involved in transcriptional events underlying the maintenance of secondary hyperalgesia.

    Topics: Alkaloids; Animals; Behavior, Animal; Butadienes; Cytosol; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hyperalgesia; Immunoblotting; Male; Mice; Mice, Inbred Strains; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Mustard Plant; Nitriles; Pain; Pain Measurement; Physical Stimulation; Plant Extracts; Plant Oils; Reaction Time; Spinal Cord; Time Factors; Visceral Afferents

2003
Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002, Sep-01, Volume: 22, Issue:17

    Alteration in the intracellular signal transduction pathway in primary afferent neurons may contribute to pain hypersensitivity. We demonstrated that very rapid phosphorylation of extracellular signal-regulated protein kinases (pERK) occurred in DRG neurons that were taking part in the transmission of various noxious signals. The electrical stimulation of Adelta fibers induced pERK primarily in neurons with myelinated fibers. c-Fiber activation by capsaicin injection induced pERK in small neurons with unmyelinated fibers containing vanilloid receptor-1 (VR-1), suggesting that pERK labeling in DRG neurons is modality specific. Electrical stimulation at the c-fiber level with different intensities and frequencies revealed that phosphorylation of ERK is dependent on the frequency. We examined the pERK in the DRG after application of natural noxious stimuli and found a stimulus intensity-dependent increase in labeled cell size and in the number of activated neurons in the c- and Adelta-fiber population. Immunohistochemical double labeling with phosphorylated ERK/VR-1 and pharmacological study demonstrated that noxious heat stimulation induced pERK in primary afferents in a VR-1-dependent manner. Capsaicin injection into the skin also increased pERK labeling significantly in peripheral fibers and terminals in the skin, which was prevented by a mitogen-activated protein kinase/ERK kinase inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis(2-aminopheylthio)butadiene (U0126). Behavioral experiments showed that U0126 dose-dependently attenuated thermal hyperalgesia after capsaicin injection and suggested that the activation of ERK pathways in primary afferent neurons is involved in the sensitization of primary afferent neurons. Thus, pERK in primary afferents by noxious stimulation in vivo showed distinct characteristics of expression and may be correlated with the functional activity of primary afferent neurons.

    Topics: Action Potentials; Animals; Butadienes; Cell Count; Dose-Response Relationship, Drug; Electric Stimulation; Electrophysiology; Enzyme Activation; Enzyme Inhibitors; Ganglia, Spinal; Hindlimb; Hyperalgesia; Immunohistochemistry; Male; Mitogen-Activated Protein Kinases; Neurons, Afferent; Nitriles; Pain; Peripheral Nerves; Phosphorylation; Physical Stimulation; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Signal Transduction

2002
ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002, Jan-15, Volume: 22, Issue:2

    Activation of ERK (extracellular signal-regulated kinase) MAP (mitogen-activated protein) kinase in dorsal horn neurons of the spinal cord by peripheral noxious stimulation contributes to short-term pain hypersensitivity. We investigated ERK activation by peripheral inflammation and its involvement in regulating gene expression in the spinal cord and in contributing to inflammatory pain hypersensitivity. Injection of complete Freund's adjuvant (CFA) into a hindpaw produced a persistent inflammation and a sustained ERK activation in neurons in the superficial layers (laminae I-IIo) of the dorsal horn. CFA also induced an upregulation of prodynorphin and neurokinin-1 (NK-1) in dorsal horn neurons, which was suppressed by intrathecal delivery of the MEK (MAP kinase kinase) inhibitor U0126. CFA-induced phospho-ERK primarily colocalized with prodynorphin and NK-1 in superficial dorsal horn neurons. Although intrathecal injection of U0126 did not affect basal pain sensitivity, it did attenuate both the establishment and maintenance of persistent inflammatory heat and mechanical hypersensitivity. Activation of the ERK pathway in a subset of nociceptive spinal neurons contributes, therefore, to persistent pain hypersensitivity, possibly via transcriptional regulation of genes, such as prodynorphin and NK-1.

    Topics: Animals; Butadienes; Disease Models, Animal; Enkephalins; Enzyme Activation; Enzyme Inhibitors; Freund's Adjuvant; Hindlimb; Hyperalgesia; Inflammation; Injections, Spinal; Male; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Nitriles; Pain; Posterior Horn Cells; Protein Precursors; Rats; Rats, Sprague-Dawley; RNA, Messenger; Spinal Cord; Substance P; Up-Regulation

2002