u-0126 and Nervous-System-Diseases

u-0126 has been researched along with Nervous-System-Diseases* in 3 studies

Other Studies

3 other study(ies) available for u-0126 and Nervous-System-Diseases

ArticleYear
Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage.
    BMC neuroscience, 2013, Mar-15, Volume: 14

    Upregulation of vasoconstrictor receptors in cerebral arteries, including endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors, has been suggested to contribute to delayed cerebral ischemia, a feared complication after subarachnoid hemorrhage (SAH). This receptor upregulation has been shown to be mediated by intracellular signalling via the mitogen activated protein kinase kinase (MEK1/2)--extracellular regulated kinase 1/2 (ERK1/2) pathway. However, it is not known what event(s) that trigger MEK-ERK1/2 activation and vasoconstrictor receptor upregulation after SAH.We hypothesise that the drop in cerebral blood flow (CBF) and wall tension experienced by cerebral arteries in acute SAH is a key triggering event. We here investigate the importance of the duration of this acute CBF drop in a rat SAH model in which a fixed amount of blood is injected into the prechiasmatic cistern either at a high rate resulting in a short acute CBF drop or at a slower rate resulting in a prolonged acute CBF drop.. We demonstrate that the duration of the acute CBF drop is determining for a) degree of early ERK1/2 activation in cerebral arteries, b) delayed upregulation of vasoconstrictor receptors in cerebral arteries and c) delayed CBF reduction, neurological deficits and mortality. Moreover, treatment with an inhibitor of MEK-ERK1/2 signalling during an early time window from 6 to 24 h after SAH was sufficient to completely prevent delayed vasoconstrictor receptor upregulation and improve neurological outcome several days after the SAH.. Our findings suggest a series of events where 1) the acute CBF drop triggers early MEK-ERK1/2 activation, which 2) triggers the transcriptional upregulation of vasoconstrictor receptors in cerebral arteries during the following days, where 3) the resulting enhanced cerebrovascular contractility contribute to delayed cerebral ischemia.

    Topics: Analysis of Variance; Animals; Antipyrine; Area Under Curve; Blood Pressure; Brain Ischemia; Butadienes; Carbon Isotopes; Cerebral Arteries; Cerebrovascular Circulation; Disease Models, Animal; Enzyme Inhibitors; Laser-Doppler Flowmetry; Male; MAP Kinase Signaling System; Motor Activity; Nervous System Diseases; Nitriles; Rats; Rats, Sprague-Dawley; Receptor, Endothelin B; Receptor, Serotonin, 5-HT1B; Signal Transduction; Subarachnoid Hemorrhage; Up-Regulation

2013
Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway.
    Journal of neuroinflammation, 2012, Dec-21, Volume: 9

    Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK) pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK)1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function.. SAH was induced in rats by injection of 250 μl of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A) treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B) treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL)-6, IL-1β, tumor necrosis factor α (TNF)α, matrix metalloproteinase (MMP)-9 and phosphorylated ERK1/2 (pERK1/2) levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed.. Expression levels of IL-1β, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNFα in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126 significantly decreased the upregulation of inflammation proteins at 48 and 72 h following SAH and improved neurological function. We found no differences between treatment regimens A and B.. These results show that SAH induces early activation of the MEK-ERK1/2 pathway in cerebral artery walls, which is associated with upregulation of proinflammatory cytokines and MMP-9. Inhibition of the MEK-ERK1/2 pathway by U0126 starting at 6 h post-SAH prevented upregulation of cytokines and MMP-9 in cerebral vessels, and improved neurological outcome.

    Topics: Animals; Astrocytes; Blood Transfusion, Autologous; Butadienes; Cerebral Arteries; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Exploratory Behavior; Extracellular Signal-Regulated MAP Kinases; Glial Fibrillary Acidic Protein; Male; Matrix Metalloproteinase 9; Mitogen-Activated Protein Kinases; Motor Activity; Nervous System Diseases; Nitriles; Rats; Rats, Sprague-Dawley; Signal Transduction; Statistics, Nonparametric; Subarachnoid Hemorrhage; Time Factors; Tumor Necrosis Factor-alpha

2012
Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats.
    Journal of neurosurgery, 2011, Volume: 114, Issue:4

    Delayed cerebral ischemia after subarachnoid hemorrhage (SAH) remains a major cause of death and disability. It has been hypothesized that cerebrovascular upregulation of vasoconstrictor receptors is a key step in the development of delayed cerebral ischemia. Upregulation of endothelin-B (ET(B)) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors has been demonstrated in cerebral artery smooth muscles in the delayed ischemic phase after experimental SAH, and intracellular signaling via the mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase 1/2 pathway has been shown to be involved in this upregulation. The aim in the present study was to determine whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and improve functional outcome after experimental SAH in rats.. Subarachnoid hemorrhage was induced in male Sprague-Dawley rats by the injection of 250 μl of autologous blood into the basal cisterns. Either U0126 or vehicle was intracisternally administered at 6, 12, 24, and 36 hours after SAH. Smooth muscle ET(B) and 5-HT(1B) receptor upregulation was studied in isolated cerebral artery segments through immunohistochemical and myographic studies of contractile responses to receptor-specific agonists. Gross sensorimotor function in the rats after SAH was assessed using a rotating pole test.. Contractile concentration-response curves for middle cerebral artery (MCA) and basilar artery (BA) segments to endothelin-1 (ET-1) and 5-carboxamidotryptamine (5-CT) were shifted leftward for SAH-induced compared with shamoperated rats due to enhanced contractile responses to individual doses of the agonists (for example, contractile responses of the BA to 3 × 10(-10) M of ET-1 and 3 × 10(-7) M of 5-CT were 9.98 ± 5.01% and 16.75 ± 3.62% of the maximal contractile capacity, respectively, in sham-operated rats and 62.78 ± 9.9% and 45.44 ± 10.62%, respectively, in SAH-induced rats). In vivo treatment with 0.19 μg/kg U0126 normalized responses in the SAH-induced rats to levels in the sham-operated rats. Protein expression of ET(B) and 5-HT(1B) receptors in cerebrovascular smooth muscles from SAH-induced rats was increased to 175 ± 33.17% and 167.7 ± 24.74%, respectively, of the levels in sham-operated rats. Endothelin-B and 5-HT(1B) expression levels in U0126-treated SAH-induced rats were at the levels in sham-operated rats (101.9 ± 13.38% and 91.44 ± 16.75%, respectively). In a rotating pole test used to assess gross sensorimotor function on the 2nd day after surgery, sham-operated rats achieved an average score of 5.37 ± 0.23, SAH-induced rats scored 3.35 ± 0.67, and SAH-induced U0126-treated rats scored 5.00 ± 0.4.. The authors demonstrated that experimental SAH induces upregulation of ET(B) and 5-HT(1B) receptors in cerebrovascular smooth muscles and that treatment with the MEK1/2 inhibitor U0126 abolishes this receptor upregulation. They also demonstrated that experimental SAH results in sensorimotor deficits as assessed by a rotating pole test. These deficits were alleviated by U0126 treatment, suggesting that cerebrovascular receptor upregulation is critical for the functional outcome of delayed cerebral ischemia. The authors suggest that inhibition of MEK1/2 may be a promising new SAH treatment strategy.

    Topics: Animals; Behavior, Animal; Butadienes; Cerebral Arteries; Endothelin B Receptor Antagonists; Immunohistochemistry; Male; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Muscle Contraction; Muscle, Smooth, Vascular; Nervous System Diseases; Nitriles; Postural Balance; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT1B; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Subarachnoid Hemorrhage; Up-Regulation; Vasoconstriction

2011