u-0126 has been researched along with Heart-Valve-Diseases* in 2 studies
2 other study(ies) available for u-0126 and Heart-Valve-Diseases
Article | Year |
---|---|
Dysregulation of hyaluronan homeostasis during aortic valve disease.
Aortic valve disease (AVD) is one of the leading causes of cardiovascular mortality. Abnormal expression of hyaluronan (HA) and its synthesizing/degrading enzymes have been observed during latent AVD however, the mechanism of impaired HA homeostasis prior to and after the onset of AVD remains unexplored. Transforming growth factor beta (TGFβ) pathway defects and biomechanical dysfunction are hallmarks of AVD, however their association with altered HA regulation is understudied. Expression of HA homeostatic markers was evaluated in diseased human aortic valves and TGFβ1-cultured porcine aortic valve tissues using histology, immunohistochemistry and Western blotting. Further, porcine valve interstitial cell cultures were stretched (using Flexcell) and simultaneously treated with exogenous TGFβ1±inhibitors for activated Smad2/3 (SB431542) and ERK1/2 (U0126) pathways, and differential HA regulation was assessed using qRT-PCR. Pathological heavy chain HA together with abnormal regional expression of the enzymes HAS2, HYAL1, KIAA1199, TSG6 and IαI was demonstrated in calcified valve tissues identifying the collapse of HA homeostatic machinery during human AVD. Heightened TSG6 activity likely preceded the end-stage of disease, with the existence of a transitional, pre-calcific phase characterized by HA dysregulation. TGFβ1 elicited a fibrotic remodeling response in porcine aortic valves similar to human disease pathology, with increased collagen and HYAL to HAS ratio, and site-specific abnormalities in the expression of CD44 and RHAMM receptors. Further in these porcine valves, expression of HAS2 and HYAL1 was found to be differentially regulated by the Smad2/3 and ERK1/2 pathways, and CD44 expression was highly responsive to biomechanical strain. Leveraging the regulatory pathways that control both HA maintenance in normal valves and early postnatal dysregulation of HA homeostasis during disease may identify new mechanistic insight into AVD pathogenesis. Topics: Adolescent; Aged; Animals; Aortic Valve; Benzamides; Butadienes; Cell Adhesion Molecules; Cells, Cultured; Dioxoles; Disease Models, Animal; Gene Regulatory Networks; Heart Valve Diseases; Homeostasis; Humans; Hyaluronic Acid; Middle Aged; Nitriles; Swine; Transforming Growth Factor beta1; Young Adult | 2017 |
Role of the MAPK/ERK pathway in valvular interstitial cell calcification.
Much remains to be discovered about the etiology of heart valve disease and the molecular level mechanisms that drive it. The MAPK/ERK pathway influences calcification in many cell types and has been linked to the expression of a contractile phenotype in valvular interstitial cells (VICs). However, a direct correlation between MAPK/ERK pathway activity and VIC calcification has not been previously described. Thus the role of the MAPK pathway in the calcification of VIC cultures was investigated by measuring ERK activation in both calcifying and noncalcifying VIC environments and then, conversely, analyzing the effects of ERK pathway inhibition on VIC calcification and phenotype. Prolonged elevation of phosphorylated ERK-1/2 was found in calcifying VIC cultures, whereas directly blocking phosphorylation of ERK-1/2 resulted in a dramatic decrease in nodule number, nodule size, and total calcified area. Application of the ERK pathway inhibitor was also associated with a dramatic decrease in apoptosis, which may have contributed to the decreased nodule formation obtained via ERK inhibition. Real-time PCR analysis revealed that calcified samples exhibited significantly elevated expression of several myofibroblastic and osteoblastic markers, while ERK inhibition substantially reduced the expression of these markers, often to levels comparable to the noncalcifying control. These data suggest that the MAPK pathway plays an important role in regulating the phenotype and calcification of VICs, wherein sustained pathway activation is associated with increased VIC calcification. These findings may be used to further elucidate the mechanisms of valvular disease and identify potential treatment targets. Topics: Animals; Apoptosis; Biomarkers; Butadienes; Calcinosis; Cell Count; Cell Movement; Enzyme Inhibitors; Extracellular Matrix; Flavonoids; Gene Expression; Heart Valve Diseases; JNK Mitogen-Activated Protein Kinases; MAP Kinase Kinase 1; MAP Kinase Kinase 2; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitriles; Phenotype; Swine; Tissue Culture Techniques | 2009 |