u-0126 and Diabetes-Mellitus--Type-2

u-0126 has been researched along with Diabetes-Mellitus--Type-2* in 11 studies

Other Studies

11 other study(ies) available for u-0126 and Diabetes-Mellitus--Type-2

ArticleYear
CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice.
    Brain, behavior, and immunity, 2019, Volume: 80

    Painful diabetic neuropathy (PDN) is a severely debilitating chronic pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of chronic pain induced by peripheral tissue inflammation or nerve injury. In this study we investigated whether CXCL13/CXCR5 mediates PDN and the underlying spinal mechanisms. We used the db/db type 2 diabetes mice, which showed obvious hyperglycemia and obese, long-term mechanical allodynia, and increased expression of CXCL13, CXCR5 as well as pro-inflammatory cytokines TNF-α and IL-6 in the spinal cord. Furthermore, in the spinal cord of db/db mice there is significantly increased gliosis and upregulated phosphorylation of cell signaling kinases, including pERK, pAKT and pSTAT3. Mechanical allodynia and upregulated pERK, pAKT and pSTAT3 as well as production of TNF-α and IL-6 were all attenuated by the noncompetitive NMDA receptor antagonist MK-801. If spinal giving U0126 (a selective MEK inhibitor) or AG490 (a Janus kinase (JAK)-STAT inhibitor) to db/db mice, both of them can decrease the mechanical allodynia, but only inhibit pERK (by U0126) or pSTAT3 (by AG490) respectively. Acute administration of CXCL13 in C57BL/6J mice resulted in exacerbated thermal hyperalgesia and mechanical allodynia, activation of the pERK, pAKT and pSTAT3 pathways and increased production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6), which were all attenuated by knocking out of Cxcr5. In all, our work showed that chemokine CXCL13 and its receptor CXCR5 in spinal cord contribute to the pathogenesis of PDN and may help develop potential novel therapeutic approaches for patients afflicted with PDN.

    Topics: Animals; Butadienes; Chemokine CXCL13; Cytokines; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Dizocilpine Maleate; Hyperalgesia; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Nitriles; Proto-Oncogene Proteins c-akt; Receptors, CXCR5; Signal Transduction; Spinal Cord; STAT3 Transcription Factor; Tyrphostins

2019
Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf‑1/ERK signaling pathway.
    International journal of molecular medicine, 2018, Volume: 41, Issue:2

    The pineal hormone melatonin influences the secretion of insulin by pancreatic islets via the G‑protein‑coupled melatonin receptors 1 and 2 that are expressed in pancreatic β‑cells. Genome‑wide association studies indicate that melatonin receptor 1B (MTNR1B) single nucleotide polymorphisms are tightly associated with type 2 diabetes mellitus (T2DM). However, the underlying mechanism is unclear. Raf‑1 serves a critical role in the mitogen‑activated protein kinase (MAPK) pathways in β‑cell survival and proliferation and, therefore, may be involved in the mechanism by which melatonin impacts on T2DM through MTNR1B. In the present study, the mRNA expression of the two mouse insulin genes Ins1 and Ins2 was investigated in MIN6 cells treated with different concentrations of melatonin, and insulin secretion was detected under the same conditions. Following the overexpression or silencing of MTNR1B, the activities of components of the MAPK signaling pathway, including Raf‑1 and ERK, were evaluated. The impact of MTNR1B knockdown on the melatonin‑regulated insulin gene expression and insulin secretion were also investigated. The results demonstrated that exogenous melatonin inhibited the expression of insulin mRNA in the MIN6 cells. Insulin secretion by the MIN6 cells, however, was not affected by melatonin. The MAPK signaling pathway was inhibited in MIN6 cells by treatment with melatonin or the overexpression of MTNR1B. The knockdown of MTNR1B totally attenuated the regulating effect of melatonin on insulin gene expression. Additionally, the inductive effect of melatonin on the expression of insulin mRNA was attenuated when the activities of Raf‑1 or ERK were blocked using the chemical inhibitors GW5074 and U0126, respectively. It may be concluded that melatonin exerts an inhibitory effect on insulin transcription via MTNR1B and the downstream MAPK signaling pathway.

    Topics: Animals; Butadienes; Diabetes Mellitus, Type 2; Disease Models, Animal; Gene Expression Regulation; Humans; Indoles; Insulin; Islets of Langerhans; MAP Kinase Signaling System; Melatonin; Mice; Nitriles; Phenols; Proto-Oncogene Proteins c-raf; Receptor, Melatonin, MT2

2018
Contractile protein expression is upregulated by reactive oxygen species in aorta of Goto-Kakizaki rat.
    American journal of physiology. Heart and circulatory physiology, 2014, Jan-15, Volume: 306, Issue:2

    Although it is known that blood vessels undergo remodeling in type 2 diabetes (T2D), the signaling pathways that underlie the structural and functional changes seen in diabetic arteries remain unclear. Our objective was to determine whether the remodeling in type 2 diabetic Goto-Kakizaki (GK) rats is evoked by elevated reactive oxygen species (ROS). Our results show that aortas from GK rats produced greater force (P < 0.05) in response to stimulation with KCl and U46619 than aortas from Wistar rats. Associated with these changes, aortic expression of contractile proteins (measured as an index of remodeling) and the microRNA (miR-145), which act to upregulate transcription of contractile protein genes, was twofold higher (P < 0.05) in GK than Wistar (age-matched control) rats, and there was a corresponding increase in ROS and decrease in nitric oxide signaling. Oral administration of the antioxidant Tempol (1 mmol/l) to Wistar and GK rats reduced (P < 0.05) myocardin and calponin expression. Tempol (1 mmol/l) decreased expression of miR-145 in Wistar and GK rat aorta. To elucidate the mechanism through which ROS increases miR-145, we measured their levels in freshly isolated aorta and cultured aortic smooth muscle cells incubated for 12 h in the presence of H2O2 (300 μmol/l). H2O2 increased expression of miR-145, and there were corresponding nuclear increases in myocardin, a miR-145 target protein. Intriguingly, H2O2-induced expression of miR-145 was decreased by U0126 (10 μmol/l), a MEK1/2 inhibitor, and myocardin was decreased by anti-miR-145 (50 nmol/l) and U0126 (10 μmol/l). Our novel findings demonstrate that ROS evokes vascular wall remodeling and dysfunction by enhancing expression of contractile proteins in T2D.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Butadienes; Calcium-Binding Proteins; Calponins; Cells, Cultured; Cyclic N-Oxides; Diabetes Mellitus, Type 2; Microfilament Proteins; MicroRNAs; Muscle, Smooth, Vascular; Myosins; Nitric Oxide; Nitriles; Nuclear Proteins; Potassium Chloride; Protein Kinase Inhibitors; Rats; Rats, Wistar; Reactive Oxygen Species; Spin Labels; Trans-Activators; Transcription, Genetic; Up-Regulation; Vasoconstrictor Agents

2014
Altered MAPK signaling in progressive deterioration of endothelial function in diabetic mice.
    Diabetes, 2012, Volume: 61, Issue:12

    We aimed to investigate specific roles of mitogen-activated protein kinases (MAPK) in the deterioration of endothelial function during the progression of diabetes and the potential therapeutic effects of MAPK inhibitors and agonists in the amelioration of endothelial function. Protein expression and phosphorylation of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk) were assessed in mesenteric arteries of 3- (3M) and 9-month-old (9M) male diabetic and control mice. The expression of p38, JNK, and Erk was comparable in all groups of mice, but the phosphorylation of p38 and JNK was increased in 3M and further increased in 9M diabetic mice, whereas the phosphorylation of Erk was substantially reduced in 9M diabetic mice. NADPH oxidase-dependent superoxide production was significantly increased in vessels of two ages of diabetic mice. Inhibition of either p38 with SB203580 or JNK with SP600125 reduced superoxide production and improved shear stress-induced dilation (SSID) in 3M, but not in 9M, diabetic mice. Treating the vessels of 9M diabetic mice with resveratrol increased Erk phosphorylation and shear stress-induced endothelial nitric oxide synthase (eNOS) phosphorylation and activity, but resveratrol alone did not improve SSID. Administration of resveratrol and SB203580 or resveratrol and SP600125 together significantly improved SSID in vessels of 9M diabetic mice. The improved response was prevented by U0126, an Erk inhibitor. Thus, p38/JNK-dependent increase in oxidative stress diminished nitric oxide-mediated dilation in vessels of 3M diabetic mice. Oxidative stress and impaired Erk-dependent activation of eNOS exacerbates endothelial dysfunction in the advanced stage of diabetes.

    Topics: Animals; Anthracenes; Butadienes; Diabetes Mellitus, Type 2; Extracellular Signal-Regulated MAP Kinases; Imidazoles; Immunoblotting; JNK Mitogen-Activated Protein Kinases; Male; Mice; Mitogen-Activated Protein Kinases; Nitriles; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyridines; Receptors, Leptin; Resveratrol; Signal Transduction; Stilbenes; Superoxides

2012
Involvement of NO and MEK/ERK pathway in enhancement of endothelin-1-induced mesenteric artery contraction in later-stage type 2 diabetic Goto-Kakizaki rat.
    American journal of physiology. Heart and circulatory physiology, 2009, Volume: 296, Issue:5

    Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. However, no abnormalities in the vascular responsiveness to ET-1 have been identified in the chronic stage of type 2 diabetes. Our goal was to look for abnormalities in the roles played by ET receptors (ET(A) and ET(B)) in the mesenteric artery of the type 2 diabetic Goto-Kakizaki (GK) rat and to identify the molecular mechanisms involved. Using mesenteric arteries from later-stage (32-38 wk old) individuals, we compared the ET-1-induced contraction and the relaxation induced by the selective ET(B) receptor agonist IRL1620 between GK rats and control Wistar rats. Mesenteric artery ERK activity and the protein expressions for ET receptors and MEK were also measured. In GK rats (vs. age-matched Wistar rats), we found as follows. 1) The ET-1-induced contraction was greater and was attenuated by BQ-123 (ET(A) antagonist) but not by BQ-788 (ET(B) antagonist). In the controls, BQ-788 augmented this contraction. 2) Both the relaxation and nitric oxide (NO) production induced by IRL1620 were reduced. 3) ET-1-induced contraction was enhanced by N(G)-nitro-l-arginine (l-NNA; NO synthase inhibitor) but suppressed by sodium nitroprusside (NO donor). 4) The enhanced ET-1-induced contraction was reduced by MEK/ERK pathway inhibitors (PD-98059 or U0126). 5) ET-1-stimulated ERK activation was increased, as were the ET(A) and MEK1/2 protein expressions. 6) Mesenteric ET-1 content was increased. These results suggest that upregulation of ET(A), a defect in ET(B)-mediated NO signaling, and activation of the MEK/ERK pathway together represent a likely mechanism mediating the hyperreactivity to ET-1 examined in this study.

    Topics: Angiotensin II; Animals; Arginine Vasopressin; Butadienes; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Endothelin-1; Endothelins; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Flavonoids; Male; MAP Kinase Kinase Kinases; Mesenteric Arteries; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitriles; Nitroarginine; Nitroprusside; Oligopeptides; Peptide Fragments; Peptides, Cyclic; Piperidines; Rats; Rats, Wistar; Receptor, Endothelin A; Receptor, Endothelin B; Signal Transduction; Vasoconstriction; Vasodilation

2009
Insulin increases the activity of mesangial BK channels through MAPK signaling.
    American journal of physiology. Renal physiology, 2008, Volume: 294, Issue:6

    Glomerular hyperfiltration and mesangial expansion have been described in mouse models of a hyperinsulinemic early stage of type 2 diabetes mellitus (DM). Large-conductance Ca(2+)-activated K(+) channels (BK) have been linked to relaxation of human mesangial cells (MC) and may contribute to MC expansion and hyperfiltration. We hypothesized that high insulin levels increase BK activity in MC by increasing the number and/or open probability (P(o)) of BK in the plasma membrane. With the use of the patch-clamp technique, BK activity was analyzed in cultured MC exposed to normal insulin (1 nM) and high insulin (100 nM) for a 48-h period. The mean P(o) and the percentage of patches (cell attached) with detected BK increased by 100% in the insulin-treated cells. Real-time PCR revealed that insulin increased mRNA of BK-alpha. Western blot revealed an insulin-stimulated increase in BK-alpha from both total cellular and plasma membrane protein fractions. The mitogen-activated protein kinase (MAPK) inhibitors PD-098059 and U-0126 attenuated the insulin-induced increase in BK-alpha expression. PD-098059 inhibited insulin-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 in MC. An insulin-stimulated increase also was found for total cellular BK-beta(1), the accessory subunit of BK in MC. A similar increase in BK-alpha mRNA and protein was evoked by an insulin-like growth factor I analog. Glomeruli, isolated from hyperinsulinemic early stage type 2 DM mice, exhibited increased BK-alpha mRNA by real-time PCR and protein by immunohistochemical staining and Western blot. These results indicate that insulin activates BK in the plasma membrane of MC and stimulates, via MAPK, an increase in cellular and plasma membrane BK-alpha.

    Topics: Animals; Butadienes; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dietary Fats; Enzyme Inhibitors; Flavonoids; Humans; Hyperinsulinism; Hypoglycemic Agents; Insulin; Insulin-Like Growth Factor I; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits; Large-Conductance Calcium-Activated Potassium Channel beta Subunits; Male; MAP Kinase Signaling System; Mesangial Cells; Mice; Mice, Inbred C57BL; Nitriles; Patch-Clamp Techniques; RNA, Messenger

2008
Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase C betaII in the diabetic fat tissue.
    American journal of physiology. Endocrinology and metabolism, 2008, Volume: 294, Issue:6

    Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser(332). However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser(336) on IRS-1 was the "priming" site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this "priming kinase" and to examine the phosphorylation of IRS-1 at Ser(336) and Ser(332) in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser(336). Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCalpha or PKCbetaII isoforms in cells enhanced IRS-1 phosphorylation at Ser(336) and Ser(332), and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser(336). The expression level and activation state of PKCbetaII, but not PKCalpha, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCbetaII were also associated with enhanced phosphorylation of IRS-1 at Ser(336/332) and elevated activity of GSK-3beta. Finally, adenoviral mediated expression of PKCbetaII in adipocytes enhancedphosphorylation of IRS-1 at Ser(336). Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCbetaII and GSK-3 at Ser(336) and Ser(332). Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.

    Topics: Adaptor Proteins, Signal Transducing; Adipose Tissue; Animals; Blotting, Western; Butadienes; Carbazoles; CHO Cells; Cricetinae; Cricetulus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Glycogen Synthase Kinase 3; Indoles; Insulin Receptor Substrate Proteins; Maleimides; Mice; Mice, Inbred C57BL; Mice, Obese; Nitriles; Phosphorylation; Protein Kinase C; Protein Kinase C beta; Protein Kinase Inhibitors; Transfection

2008
Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus.
    Journal of cellular biochemistry, 2007, Jun-01, Volume: 101, Issue:3

    Pancreatic islet fibrosis observed in Type 2 diabetes is one of the major factors leading to progressive beta-cell loss and dysfunction. Despite its importance, the mechanism of islet-restricted fibrogenesis associated with pancreatic stellate cell (PSC) activation and proliferation remains to be defined. Therefore, we studied whether the islet-specific environment represented by hyperglycemia and hyperinsulinemia had additive effects on the activation and proliferation of cultured rat PSCs. Cells were stimulated to activate and proliferate with glucose and insulin, either individually or concomitantly. Both stimuli promoted PSC proliferation and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation independently, but an additive effect was also demonstrated. Blockade of ERK signaling by the mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, suppressed both glucose- and insulin-induced ERK 1/2 phosphorylation and PSC proliferation. Glucose and insulin-induced ERK 1/2 phosphorylation also stimulated connective tissue growth factor gene expression. Thus, hyperglycemia and hyperinsulinemia are two crucial mitogenic factors that activate and proliferate PSCs, and the presence of both states will amplify this response.

    Topics: Animals; Blood Glucose; Blotting, Western; Butadienes; Cell Proliferation; Cells, Cultured; Connective Tissue Growth Factor; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Gene Expression; Glucose; Hyperglycemia; Hyperinsulinism; Immediate-Early Proteins; Insulin; Intercellular Signaling Peptides and Proteins; Islets of Langerhans; Male; MAP Kinase Signaling System; Nitriles; Pancreas; Phosphorylation; Rats; Rats, Sprague-Dawley

2007
BMK1 is activated in glomeruli of diabetic rats and in mesangial cells by high glucose conditions.
    Kidney international, 2004, Volume: 65, Issue:5

    High glucose causes renal cell injury through various signal transduction pathways, including mitogen-activated protein (MAP) kinases cascades. Big MAP kinase 1 (BMK1), also known as extracellular signal-regulated kinase 5 (ERK5), is a recently identified MAP kinase family member and was reported to be sensitive to osmotic and oxidative stress. However, the role of BMK1 in diabetic nephropathy has not been elucidated yet.. We investigated whether BMK1 is activated in the glomeruli of Otsuka Long Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus in comparison with the control Long Evans Tokushima Otsuka (LETO) rats. We also examined the effect of high glucose on BMK1 activity in cultured rat mesangial cells.. BMK1 and ERK1/2 but not p38 were activated in the glomeruli of OLETF rats, which showed diabetic nephropathy at 52 weeks of age. High glucose, in addition to a high concentration of raffinose, caused rapid and significant activation of BMK1 in rat mesangial cells. MAP kinase/ERK kinase (MEK) inhibitors, U0126 and PD98059, both inhibited BMK1 activation by high glucose in a concentration-dependent manner. Protein kinase C (PKC) inhibition by GF109203X and PKC down-regulation with long-time phorbol myristate acetate (PMA) treatment both inhibited BMK1 and Src kinase activation. Src kinase inhibitors, herbimycin A and PP2, also inhibited high glucose-induced BMK1 activation. PKC inhibitors, Src inhibitors and MEK inhibitors, all inhibited cell proliferation by high glucose. Finally, transfection of dominant-negative MEK5, which is an upstream regulator of BMK1, abolished the BMK1-mediated rat mesangial cell proliferation stimulated by high glucose.. In the present study, we demonstrated that high glucose activates BMK1 both in vivo and in vitro. It was suggested that high glucose induces PKC- and c-Src-dependent BMK1 activation. It could not be denied that BMK1 activation is induced through an osmotic stress-sensitive mechanism. BMK1-mediated mesangial cell growth may be involved in the pathogenesis of diabetic nephropathy.

    Topics: Animals; Butadienes; Cells, Cultured; CSK Tyrosine-Protein Kinase; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Enzyme Activation; Enzyme Inhibitors; Glomerular Mesangium; Glucose; Male; MAP Kinase Kinase 5; Mitogen-Activated Protein Kinase 7; Nitriles; Organic Chemicals; Protein Kinase C; Protein-Tyrosine Kinases; Rats; Rats, Inbred OLETF; src-Family Kinases

2004
NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism.
    Arteriosclerosis, thrombosis, and vascular biology, 2002, Jul-01, Volume: 22, Issue:7

    Hyperinsulinemia is a significant risk factor for the pathogenesis of vascular disease. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a modulator of insulin signaling in nonvascular cells, and we have recently reported that NO increases the activity of PTP1B in rat vascular smooth muscle cells. In the present study, we tested the hypothesis that NO attenuates insulin-stimulated cell motility via a PTP1B-mediated mechanism involving downregulation of insulin signal transduction.. Treatment of primary aortic smooth muscle cells from newborn rats with the NO donor S-nitroso-N-acetylpenicillamine reduced cell motility, tyrosine phosphorylation levels of insulin receptor beta subunit and insulin receptor substrate-1, and extracellular signal-regulated kinase activity. Overexpression of wild-type PTP1B via an adenoviral vector blocked the capacity of insulin to stimulate cell motility and insulin receptor phosphorylation, whereas expression of a dominant-negative mutant of PTP1B attenuated the capacity of NO to decrease cell motility.. Our findings indicate that activation of PTP1B is necessary and sufficient to account for the capacity of NO to decrease insulin-stimulated signal transduction and cell motility in cultured aortic smooth muscle cells. The results could explain the capacity of NO to oppose neointima formation in states of hyperinsulinemia.

    Topics: Animals; Animals, Newborn; Aorta, Thoracic; Butadienes; Cell Communication; Cell Movement; Cells, Cultured; Diabetes Mellitus, Type 2; Drug Synergism; Enzyme Inhibitors; Female; Insulin; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Muscle, Smooth, Vascular; Mutation; Nitric Oxide; Nitric Oxide Donors; Nitriles; Penicillamine; Phosphotyrosine; Protein Serine-Threonine Kinases; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Protein Tyrosine Phosphatase, Non-Receptor Type 12; Protein Tyrosine Phosphatases; Rats; Rats, Sprague-Dawley; Receptor, Insulin; Recombinant Proteins; Signal Transduction; src Homology Domains

2002
A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2001, Volume: 15, Issue:13

    The onset of diabetic neuropathy, a complication of diabetes mellitus, has been linked to poor glycemic control. We tested the hypothesis that the mitogen-activated protein kinases (MAPK) form transducers for the damaging effects of high glucose. In cultures of adult rat sensory neurons, high glucose activated JNK and p38 MAPK but did not result in cell damage. However, oxidative stress activated ERK and p38 MAPKs and resulted in cellular damage. In the dorsal root ganglia of streptozotocin-induced diabetic rats (a model of type I diabetes), ERK and p38 were activated at 8 wk duration, followed by activation of JNK at 12 wk duration. We report activation of JNK and increases in total levels of p38 and JNK in sural nerve of type I and II diabetic patients. These data implicate MAPKs in the etiology of diabetic neuropathy both via direct effects of glucose and via glucose-induced oxidative stress.

    Topics: Animals; Butadienes; Cell Survival; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Ganglia, Spinal; Glucose; Humans; Hydrogen Peroxide; Imidazoles; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Kinase 4; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Neurons, Afferent; Nitriles; p38 Mitogen-Activated Protein Kinases; Pyridines; Rats; Rats, Wistar; Sural Nerve

2001