u-0126 has been researched along with Bronchial-Hyperreactivity* in 3 studies
3 other study(ies) available for u-0126 and Bronchial-Hyperreactivity
Article | Year |
---|---|
Signaling pathways regulating interleukin-13-stimulated chemokine release from airway smooth muscle.
Interleukin (IL)-13 receptor activation on airway smooth muscle cells induces eotaxin release and activates multiple signaling pathways including mitogen-activated protein kinases, and signal transducer and activator of transcription 6 (STAT6). To examine a requirement for STAT6 in mediating IL-13-stimulated eotaxin release we used antisense oligodeoxynucleotides (ODNs) to downregulate endogenous STAT6 protein. STAT6 antisense ODNs were taken up by about 85% of cells. Selective downregulation of STAT6 protein occurred with antisense ODNs, but not with sense or scrambled ODNs. Eotaxin release induced by IL-13 or IL-4 (10 ng/ml) was reduced by 81 +/- 4 and 75 +/- 7%, respectively, in cells transfected with antisense ODNs (p < 0.001), but not with a sense ODN or a scrambled ODN. Eotaxin release induced by IL-1beta was unaffected by STAT6 antisense ODN (p > 0.05). Finally, IL-13- or IL-4-dependent eotaxin release was abolished when inhibitors of both p42/p44 ERK (U0126, 10 microM) and p38 (SB202190, 10 microM) mitogen-activated protein kinase pathways were combined in STAT6 antisense ODN-transfected cells. In contrast, about 25% of the response remained when each inhibitor was examined alone in STAT6 antisense ODN-treated cells. These data support roles for both STAT6- and mitogen-activated protein kinase-dependent pathways in mediating eotaxin release from airway smooth muscle by IL-13 or IL-4. Topics: Adult; Aged; Asthma; Bronchial Hyperreactivity; Butadienes; Cells, Cultured; Chemokine CCL11; Chemokines; Chemokines, CC; Down-Regulation; Female; Humans; Imidazoles; Inflammation; Interleukin-13; Interleukin-4; Male; Middle Aged; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Muscle, Smooth; Nitriles; Oligodeoxyribonucleotides, Antisense; p38 Mitogen-Activated Protein Kinases; Pyridines; Respiratory Mucosa; Signal Transduction; STAT6 Transcription Factor; Trans-Activators | 2004 |
Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model.
Mitogen-activated protein kinase (MAPK) signaling cascade plays a pivotal role in the activation of inflammatory cells. Recent findings revealed that the activity of p42/44 MAPK (also known as extracellular signal-regulated kinase (ERK)) in the lungs was significantly higher in asthmatic mice than in normal controls. We hypothesized that inhibition of ERK activity may have anti-inflammatory effects in allergic asthma. BALB/c mice were sensitized with OVA and, upon OVA aerosol challenge, developed airway eosinophilia, mucus hypersecretion, elevation in cytokine and chemokine levels, up-regulation of VCAM-1 expression, and airway hyperresponsiveness. Intraperitoneal administration of U0126, a specific MAPK/ERK kinase inhibitor, significantly (p < 0.05) inhibited OVA-induced increases in total cell counts, eosinophil counts, and IL-4, IL-5, IL-13, and eotaxin levels recovered in bronchoalveolar lavage fluid in a dose-dependent manner. U0126 also substantially (p < 0.05) reduced the serum levels of total IgE and OVA-specific IgE and IgG1. Histological studies show that U0126 dramatically inhibited OVA-induced lung tissue eosinophilia, airway mucus production, and expression of VCAM-1 in lung tissues. In addition, U0126 significantly (p < 0.05) suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine in a dose-dependent manner. Western blot analysis of whole lung lysates shows that U0126 markedly attenuated OVA-induced tyrosine phosphorylation of ERK1/2. Taken together, our findings implicate that inhibition of ERK signaling pathway may have therapeutic potential for the treatment of allergic airway inflammation. Topics: Animals; Anti-Inflammatory Agents; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Butadienes; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Eosinophils; Immunoglobulin G; Male; Mice; Mice, Inbred BALB C; Mitogen-Activated Protein Kinases; Mucus; Nitriles; Ovalbumin; Phosphorylation; Vascular Cell Adhesion Molecule-1 | 2004 |
IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation.
In addition to a direct proinflammatory role, IL-13 has been demonstrated to induce a goblet cell metaplastic phenotype in the airway epithelium in vivo. We have studied the direct effects of IL-13 (and IL-4) on well-differentiated, air-liquid interface cultures of human bronchial epithelial cells (HBEs) and provide a quantitative assessment of the development of a mucus hypersecretory phenotype induced by these cytokines. Using Alcian blue staining of goblet cells and immunohistochemical detection of MUC5AC, we found that IL-13 (and IL-4) induced increases in the goblet cell density (GCD) of the HBE cultures. The effects of these cytokines were critically dependent on concentration: 1 ng/ml routinely induced a 5- to 10-fold increase in GCD that was associated with a hypersecretory ion transport phenotype. Paradoxically, 10 ng/ml of either cytokine induced a profound reduction in GCD. Removal of EGF from the culture media or treatment of the cells with AG-1478 [a potent inhibitor of EGF receptor tyrosine kinase (EGFR-TK)] demonstrated that the EGFR-TK pathway was key to the regulation of the basal GCD but that it was not involved in the IL-13-driven increase. The IL-13-driven increase in GCD was, however, sensitive to inhibition of MEK (PD-98059, U-0126), p38 MAPK (SB-202190), and phosphatidylinositol (PtdIns) 3-kinase (LY-294002). These data support the concept that IL-13 is in part able to induce a mucus hypersecretory phenotype through a direct interaction with the airway epithelium and that MAP kinase and PtdIns 3-kinase signaling pathways are involved. Topics: Bronchi; Bronchial Hyperreactivity; Butadienes; Cell Count; Cells, Cultured; Chromones; Enzyme Inhibitors; Epithelial Cells; ErbB Receptors; Flavonoids; Goblet Cells; Humans; Imidazoles; Interleukin-13; Interleukin-4; Ion Channels; MAP Kinase Signaling System; Morpholines; Nitriles; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Pyridines | 2003 |