tyrphostin-ag825 and Glioblastoma

tyrphostin-ag825 has been researched along with Glioblastoma* in 1 studies

Other Studies

1 other study(ies) available for tyrphostin-ag825 and Glioblastoma

ArticleYear
Modulation of glioma BK channels via erbB2.
    Journal of neuroscience research, 2005, Jul-15, Volume: 81, Issue:2

    Glioma cells show up-regulation and constitutive activation of erbB2, and its expression correlates positively with increased malignancy. A similar correlation has been demonstrated for the expression of gBK, a calcium-sensitive, large-conductance K(+) channel. We show here that glioma BK channels are a downstream target of erbB2/neuregulin signaling. Tyrphostin AG825 was able to disrupt the constituitive erbB2 activation in a dose-dependent manner, causing a 30-mV positive shift in gBK channel activation in cell-attached patches. Conversely, maximal stimulation of erbB2 with a recombinant neuregulin (NRG-1beta) caused a 12-mV shift in the opposite direction. RT-PCR studies reveal no change in the BK splice variants expressed in treated glioma cells. Furthermore, isolation of surface proteins through biotinylation did not show a change in gBK channel expression, and probing with phospho-specific antibodies showed no alteration in channel phosphorylation. However, fura-II Ca(2+) fluorescence imaging revealed a 35% decrease in the free intracellular Ca(2+) concentration after erbB2 inhibition and an increase in NRG-1beta-treated cells, suggesting that the observed changes most likely were due to alterations in [Ca(2+)](i). Consistent with this conclusion, neither tyrphostin AG825 nor NRG-1beta was able to modulate gBK channels under inside-out or whole-cell recording conditions when intracellular Ca(2+) was fixed. Thus, gBK channels are a downstream target for the abundantly expressed neuregulin-1 receptor erbB2 in glioma cells. However, unlike the case in other systems, this modulation appears to occur via changes in [Ca(2+)](i) without changes in channel expression or phosphorylation. The enhanced sensitivity of gBK channels in glioma cells to small, physiological Ca(2+) changes appears to be a prerequisite for this modulation.

    Topics: Benzothiazoles; Brain Neoplasms; Calcium; Cell Line, Tumor; Glioblastoma; Humans; Large-Conductance Calcium-Activated Potassium Channels; Neuregulins; Potassium Channels, Calcium-Activated; Protein-Tyrosine Kinases; Receptor, ErbB-2; Signal Transduction; Tyrphostins

2005