tubeimoside-ii has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for tubeimoside-ii and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects.
To study structure-activity relationship of tubeimosides isolated from Bolbostemma paniculatum for their anti-inflammatory, antitumor, and antitumor-promoting effects.. Tubeimosides I, II, and III were isolated from tubers of Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), a Chinese folk medicine,"Tubeimu", and their anti-inflammatory, anti-tumor, anti-tumorigenic activities, and acute toxicity were studied in vivo.. Tubeimosides I, II, and III are all natural analogues of oleanane type of triterpenoid saponins from the same medicinal plant, and all show anti-inflammatory, antitumor, and antitumor-promo ting effects. However, the anti-inflammatory, anti-tumor, and anti-tumorigenic activities of tubeimoside II are stronger than those of tubeimoside I, and the acute toxicity of tubeimoside II is lower than that of tubeimoside I; the anti-inflammatory, anti-tumor, and anti-tumorigenic activities of tubeimoside III are stronger than those of tubeimoside II, and the acute toxicity of tubeimoside III is also stronger than that of tubeimoside II.. C-16 hydroxyl group of tubeimoside II plays an important role in enhancing biological activity of tubeimoside II and in decreasing its toxicity. The difference of chemical structure in B and/or C position between tubeimosides III and II plays an important role in enhancing biological activity and toxicity of tubeimoside III. Therefore tubeimosidre II may be the most promising agent for cancer chemoprevention and chemotherapy among tubeimosides I, II, and III. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Cucurbitaceae; Disease Models, Animal; Edema; Female; Male; Mice; Mice, Inbred BALB C; Mice, Inbred ICR; Molecular Structure; Neoplasms, Experimental; Saponins; Sarcoma 180; Structure-Activity Relationship; Tetradecanoylphorbol Acetate; Treatment Outcome; Triterpenes | 2001 |