tryptophan and Colitis

tryptophan has been researched along with Colitis in 63 studies

Research

Studies (63)

TimeframeStudies, this research(%)All Research%
pre-19902 (3.17)18.7374
1990's1 (1.59)18.2507
2000's6 (9.52)29.6817
2010's21 (33.33)24.3611
2020's33 (52.38)2.80

Authors

AuthorsStudies
Chail, M; Dhaneshwar, SS; Naqvi, S; Patil, M; Vadnerkar, G1
Bhatt, L; Dhaneshwar, SS; Gairola, N; Kadam, SS; Kandpal, M; Rathi, B; Vadnerkar, G1
Chen, YF; Jiang, S; Shen, YM; Tao, JH; Wang, L1
Kurzepa, J; Parada-Turska, J; Wnorowska, S; Wnorowski, A1
Antognelli, C; Aversa, F; Bellet, MM; Bereshchenko, O; Costantini, C; D'Onofrio, F; Gargaro, M; Giovagnoli, S; Nunzi, E; Pariano, M; Pieraccini, G; Puccetti, M; Renga, G; Ricci, M; Riuzzi, F; Romani, L; Santarelli, I; Stincardini, C1
Cheng, H; Feng, W; Liu, J; Peng, C; Tan, Y; Wang, J; Zhang, D1
Endres, V; Jones, B; Klemashevich, C; Shankar, S; Sun, Y; Tuchaai, E; Wu, CS1
Chen, Y; Fu, Y; Gao, H; Hou, X; Xu, K1
Chen, R; Guo, SN; He, SQ; Huang, JY; Li, SP; Lin, J; Liu, J; Lun, JC; Lv, WJ; Ma, YM1
Agus, A; Arguello, RR; Aucouturier, A; Beaugerie, L; Benech, N; Bermúdez-Humarán, LG; Bourrier, A; Creusot, L; Da Costa, G; Danne, C; Dvorák, Z; Emond, P; Galbert, C; Illes, P; Kirchgesner, J; Landman, C; Langella, P; Lapière, A; Lavelle, A; Lefevre, A; Magniez, A; Mani, S; Michaudel, C; Michel, ML; Moulin, D; Nádvorník, P; Nion-Larmurier, I; Oeuvray, C; Planchais, J; Poirier, M; Richard, ML; Rolhion, N; Seksik, P; Sokol, H; Spatz, M; Wang, Y1
Chen, J; Huang, S; Liang, J; Luo, X; Pan, Z; Su, Y; Wang, Q; Wang, X; Xie, X; Zhang, M; Zhou, L1
Cheng, Y; Liu, C; Sun, C1
Li, T; Niu, P; Ren, D; Shao, H; Yang, X; Zhang, B; Zhao, A; Zhao, Y1
Han, N; Li, Q; Ren, D; Shi, L; Wang, N; Yan, T; Yang, X; Zhang, B; Zhang, L; Zhang, X; Zhao, Y1
Chang, Y; Deng, H; Du, B; Feng, J; Huang, H; Li, X; Peng, J; Qiu, M; Wu, J; Wu, P; Xiao, H; Yang, Y1
Li, T; Liu, L; Niu, P; Ren, D; Shao, H; Yang, W; Yang, X; Zhang, L; Zhang, X; Zhao, Y1
Gao, H; Liu, P; Liu, T; Ning, Z1
Cui, C; Hong, H; Huang, SB; Niu, GY; Qiao, CM; Quan, W; Shen, YQ; Wu, J; Zhao, LP; Zhao, WJ; Zhou, Y1
Cui, C; Hong, H; Huang, SB; Li, T; Niu, GY; Qiao, CM; Quan, W; Shen, YQ; Wu, J; Zhao, LP; Zhao, WJ; Zhou, Y1
Guo, M; Li, S; Liu, M; Wang, Y; Xiang, H; Yao, J1
Cheng, W; Hou, BL; Liang, YN; Wang, T; Wang, Z; Zhu, J1
Feng, WW; Hu, P; Jiang, Z; Liu, J; Yan, X; Zeng, Y1
Ji, X; Jin, J; Li, J; Wang, Y; Yin, H; Zhao, L; Zhao, M1
Bibb, JA; Chakraborti, A; Funakoshi, H; Kanai, M; Kawahara, Y; Kuroiwa, M; Murakami, Y; Nishi, A; Ohnishi, YN; Shuto, T; Sin, R; Sotogaku, N; Sugiyama, K1
Chu, H; Deng, X; Li, Q; Liu, R; Lv, J; Miao, C; Peng, X; Sun, X; Tang, Q; Wang, B; Wang, Q; Yang, J; Yao, Z; Yu, K; Zhao, W; Zhou, L; Zhou, Z1
Achasova, KM; Babochkina, TI; Borisova, MA; Kozhevnikova, EN; Litvinova, EA; Pindyurin, AV; Snytnikova, OA; Tsentalovich, YP1
Cho, JY; Choi, EY; Jeon, CO; Kim, B; Lee, YK; Morse, HC; Shin, DM; Shin, JH; Shon, WJ1
Ando, T; Hara, A; Hattori, T; Hirata, A; Hoshi, M; Nakamoto, K; Saito, K; Tashita, C; Tezuka, H; Tomita, H; Yamamoto, Y1
Chen, H; Dai, Z; Liu, M; Liu, N; Sun, S; Wang, B; Wu, G; Wu, Z1
Alvarado, DM; Ciorba, MA1
Du, P; Huo, G; Li, B; Li, C; Li, H; Liu, F; Shi, J; Smith, EE; Wang, N; Xie, Q1
Dong, S; Du, W; Jing, W; Liu, J; Lu, H; Luo, H; Luo, X; Wang, S; Wang, Y; Wei, B; Yang, L1
He, X; Peng, W; Tang, J; Xie, L; Xu, Y; Zhang, W; Zhang, Z; Zhou, J1
Ala, M1
Liu, L; Ren, D; Yang, W; Yang, X; Zhao, Y1
Lamas, B; Richard, ML; Sokol, H1
Chen, JN; Huang, YF; Lai, XP; Qu, C; Su, ZR; Xie, Y; Yang, GH; Yu, XT; Yuan, ZW; Zeng, HF; Zhang, XJ1
Suolang, Y; Tang, Y; Zhang, Y; Zhao, L; Zhou, D1
Keenan, CM; MacEachern, SJ; Papakonstantinou, E; Patel, BA; Sharkey, KA1
Ding, Y; Du, Q; Hu, R; Liu, X; Zhang, X; Zhou, W1
Besra, G; Blumberg, RS; Collin, F; de Silva, PSA; Gandhi, A; Gensollen, T; Glickman, J; Hauser, R; Iyer, SS; Lavin, R; Llebaria, A; Maxwell, A; Neves, JF; Oh, SF; Sartor, RB; Serra, C1
Agus, A; Planchais, J; Sokol, H1
Cheng, S; Geng, S; Han, X; Jiang, X; Li, Y; Ma, X; Wang, Y; Wen, Z1
Bin, P; Chen, S; Liu, G; Ren, W; Tan, B; Wang, M; Xia, Y; Yang, H; Yin, L; Yin, Y1
Chen, JN; Chen, PV; Dou, YX; Huang, T; Qu, C; Su, ZR; Wu, JZ; Xie, Y; Yu, XT; Yuan, ZW; Zeng, HF; Zhang, XJ1
Deng, Z; Egilmez, NK; Haribabu, B; Hsieh, M; Hu, X; Hutchins, E; Jala, VR; Kumar, A; Lei, C; Luo, C; McClain, CJ; Merchant, ML; Miller, DM; Mu, J; Park, JW; Reiman, R; Ren, Y; Sayed, M; Sriwastva, MK; Sundaram, K; Teng, Y; Van Keuren-Jensen, K; Yan, J; Zhang, HG; Zhang, L1
Chen, T; Ji, W; Li, H; Li, YQ; Pei, LY; Wang, W; Wu, SX; Zhang, MM; Zhang, T1
Behnsen, J; Raffatellu, M1
Choi, EY; Lee, YK; Shin, DM; Shin, JH; Shon, WJ1
Beaugerie, L; Bourrier, A; Bridonneau, C; Brot, L; Cosnes, J; Couturier-Maillard, A; Da Costa, G; Hoffmann, TW; Jegou, S; Lamas, B; Langella, P; Launay, JM; Leducq, V; Merabtene, F; Michel, ML; Natividad, JM; Nion-Larmurier, I; Pham, HP; Richard, ML; Ryffel, B; Seksik, P; Sokol, H; Taleb, S; Xavier, RJ1
Alexeev, EE; Battista, KD; Colgan, SP; Curtis, VF; Gerich, ME; Glover, LE; Kao, DJ; Kitzenberg, DA; Kominsky, DJ; Lanis, JM1
Aoyama, Y; Aso, H; Hirahara, K; Islam, J; Komai, M; Sato, S; Shirakawa, H; Tomita, S; Watanabe, K; Watanabe, T1
Archbold, T; Fan, MZ; Kim, CJ; Kovacs-Nolan, JA; Mine, Y; Yang, C1
Fowell, DJ; Hughson, A; Sojka, DK1
Choi, BK; Kim, CH; Kwon, BS; Vinay, DS1
Bercik, P; Bergonzelli, GE; Blennerhassett, P; Cherbut, C; Collins, SM; Corthesy-Theulaz, I; Foster, JA; Huang, X; Jackson, W; Khan, WI; Lu, J; Macri, J; Malinowski, P; Neufeld, KA; Potter, M; Verdu, EF1
Izcue, A; Powrie, F1
Camargo, SM; Clevers, H; Fukamizu, A; Hanada, R; Hanada, T; Hashimoto, T; Ishiguro, H; Kuba, K; Lipinski, S; Paolino, M; Penninger, JM; Perlot, T; Rehman, A; Richter, A; Rosenstiel, P; Schreiber, S; Sigl, V; Singer, D; Trichereau, J; Verrey, F; Wild, B1
ECKSTEIN, M; SIERING, H1
Bhatt, L; Dhaneshwar, SS; Gairola, N; Kandpal, M; Vadnerkar, G1
Ballinger, A; Dryden, S; El-Haj, T; Farthing, MJ; Obeid, O; Perrett, D; Turvill, J; Williams, G1
Atherton, DJ; Bender, DA; Bridges, NA; Clayton, PT; Malone, M; Milla, PJ1
Asafov, GB; Ekisenina, NI; Ivanova, LM; Lumel'skiĭ, VIa; Smagin, VG1

Reviews

3 review(s) available for tryptophan and Colitis

ArticleYear
Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system.
    International reviews of immunology, 2022, Volume: 41, Issue:3

    Topics: Colitis; Colorectal Neoplasms; Humans; Indoles; Inflammatory Bowel Diseases; Kynurenine; Serotonin; Th17 Cells; Tryptophan

2022
Caspase recruitment domain 9, microbiota, and tryptophan metabolism: dangerous liaisons in inflammatory bowel diseases.
    Current opinion in clinical nutrition and metabolic care, 2017, Volume: 20, Issue:4

    Topics: Animals; CARD Signaling Adaptor Proteins; Colitis; Gastrointestinal Microbiome; Genetic Predisposition to Disease; Humans; Inflammatory Bowel Diseases; Interleukin-22; Interleukins; Mice; Mice, Knockout; Receptors, Aryl Hydrocarbon; Tryptophan

2017
Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.
    Cell host & microbe, 2018, 06-13, Volume: 23, Issue:6

    Topics: Autistic Disorder; Colitis; Communicable Diseases; Crohn Disease; Gastrointestinal Microbiome; Gastrointestinal Tract; Humans; Indoles; Inflammatory Bowel Diseases; Kynurenine; Metabolic Syndrome; Obesity; Serotonin; Short Bowel Syndrome; Tryptophan

2018

Other Studies

60 other study(ies) available for tryptophan and Colitis

ArticleYear
Colon-specific mutual amide prodrugs of 4-aminosalicylic acid for their mitigating effect on experimental colitis in rats.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:1

    Topics: Aminosalicylic Acids; Animals; Colitis; Colon; Drug Delivery Systems; Drug Stability; Drug-Related Side Effects and Adverse Reactions; Liver; Pancreas; Prodrugs; Rats; Ulcer

2009
Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrugs of 5-aminosalicylic acid for colon-specific drug delivery in inflammatory bowel disease.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:10

    Topics: Aminosalicylic Acids; Animals; Arthritis; Colitis; Colon; Female; Inflammatory Bowel Diseases; Male; Peroxidase; Prodrugs; Rats; Rats, Wistar; Ulcer

2009
Lizhong Decoction Ameliorates Ulcerative Colitis in Mice via Regulation of Plasma and Urine Metabolic Profiling.
    Chinese journal of integrative medicine, 2022, Volume: 28, Issue:11

    Topics: Alanine; Amino Acids; Animals; Arachidonic Acids; Aspartic Acid; Bile Acids and Salts; Biomarkers; Colitis; Colitis, Ulcerative; Dextrans; Drugs, Chinese Herbal; Glutamates; Glycerophospholipids; Linoleic Acids; Mice; Sphingolipids; Terpenes; Tryptophan

2022
Alterations in Kynurenine and NAD
    International journal of molecular sciences, 2021, Dec-16, Volume: 22, Issue:24

    Topics: Colitis; Humans; Inflammatory Bowel Diseases; Infliximab; Kynurenine; Metabolic Networks and Pathways; Nicotinamide N-Methyltransferase; Quinolinic Acid; Receptors, G-Protein-Coupled; Receptors, Nicotinic; Tryptophan

2021
Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite.
    Journal for immunotherapy of cancer, 2022, Volume: 10, Issue:3

    Topics: Animals; Colitis; Humans; Immune Checkpoint Inhibitors; Mice; Neoplasms; Treatment Outcome; Tryptophan

2022
Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism.
    Frontiers in immunology, 2022, Volume: 13

    Topics: Animals; Colitis; Colitis, Ulcerative; Dextran Sulfate; Gastrointestinal Microbiome; Ginsenosides; Inflammation; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Tryptophan

2022
Deletion of ghrelin alters tryptophan metabolism and exacerbates experimental ulcerative colitis in aged mice.
    Experimental biology and medicine (Maywood, N.J.), 2022, Volume: 247, Issue:17

    Topics: Animals; Chemotactic Factors; Colitis; Colitis, Ulcerative; Cytokines; Dextran Sulfate; Disease Models, Animal; Fatty Acids, Volatile; Fluorescein-5-isothiocyanate; Gene Deletion; Ghrelin; Inflammation; Interleukin-6; Interleukins; Mice; Mice, Inbred C57BL; Mice, Knockout; Tryptophan; Tumor Necrosis Factor-alpha

2022
Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling.
    Frontiers in immunology, 2022, Volume: 13

    Topics: Animals; Anti-Inflammatory Agents; Colitis; Cytokines; Dextran Sulfate; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Transcriptome; Tryptophan

2022
Polysaccharides derived from Shenling Baizhu San improve colitis via modulating tryptophan metabolism in mice.
    International journal of biological macromolecules, 2022, Dec-01, Volume: 222, Issue:Pt A

    Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Drugs, Chinese Herbal; Mice; Mice, Inbred C57BL; Polysaccharides; Tryptophan

2022
Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases.
    Gut, 2023, Volume: 72, Issue:7

    Topics: Animals; Colitis; Humans; Inflammation; Inflammatory Bowel Diseases; Intestines; Mice; Tryptophan

2023
Gegen Qinlian decoction activates AhR/IL-22 to repair intestinal barrier by modulating gut microbiota-related tryptophan metabolism in ulcerative colitis mice.
    Journal of ethnopharmacology, 2023, Feb-10, Volume: 302, Issue:Pt B

    Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Indoles; Interleukin-22; Mice; Mice, Inbred C57BL; Receptors, Aryl Hydrocarbon; Tight Junction Proteins; Tryptophan

2023
β-Glucan alleviates mice with ulcerative colitis through interactions between gut microbes and amino acids metabolism.
    Journal of the science of food and agriculture, 2023, Volume: 103, Issue:8

    Topics: Animals; beta-Glucans; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Tryptophan

2023
    Journal of agricultural and food chemistry, 2022, Dec-28, Volume: 70, Issue:51

    Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Tryptophan

2022
Gut Bacterial Indole-3-acetic Acid Induced Immune Promotion Mediates Preventive Effects of Fu Brick Tea Polyphenols on Experimental Colitis.
    Journal of agricultural and food chemistry, 2023, Jan-18, Volume: 71, Issue:2

    Topics: Animals; Bacteria; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Polyphenols; Tryptophan

2023
Fuc-S-A New Ultrasonic Degraded Sulfated α-l-Fucooligosaccharide-Alleviates DSS-Inflicted Colitis through Reshaping Gut Microbiota and Modulating Host-Microbe Tryptophan Metabolism.
    Marine drugs, 2022, Dec-25, Volume: 21, Issue:1

    Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Male; Mice; Mice, Inbred C57BL; Oligosaccharides; Sulfates; Tryptophan; Ultrasonics

2022
Theabrownin from Fu Brick Tea Improves Ulcerative Colitis by Shaping the Gut Microbiota and Modulating the Tryptophan Metabolism.
    Journal of agricultural and food chemistry, 2023, Feb-15, Volume: 71, Issue:6

    Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Fluorouracil; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Tea; Tryptophan

2023
Cassane diterpenoid ameliorates dextran sulfate sodium-induced experimental colitis by regulating gut microbiota and suppressing tryptophan metabolism.
    Frontiers in immunology, 2022, Volume: 13

    Topics: Animals; Colitis; Colitis, Ulcerative; Dextran Sulfate; Diterpenes; Gastrointestinal Microbiome; Indoleamine-Pyrrole 2,3,-Dioxygenase; Inflammation; Mice; RNA, Ribosomal, 16S; Tryptophan

2022
DSS-induced acute colitis causes dysregulated tryptophan metabolism in brain: an involvement of gut microbiota.
    The Journal of nutritional biochemistry, 2023, Volume: 115

    Topics: Brain; Colitis; Gastrointestinal Microbiome; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Kynurenine; RNA, Ribosomal, 16S; Tryptophan

2023
DSS-induced colitis activates the kynurenine pathway in serum and brain by affecting IDO-1 and gut microbiota.
    Frontiers in immunology, 2022, Volume: 13

    Topics: Animals; Brain; Colitis; Gastrointestinal Microbiome; Indoleamine-Pyrrole 2,3,-Dioxygenase; Inflammatory Bowel Diseases; Kynurenine; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Tryptophan; Tryptophan Oxygenase

2022
The Tryptophan Metabolite Indole-3-Carboxaldehyde Alleviates Mice with DSS-Induced Ulcerative Colitis by Balancing Amino Acid Metabolism, Inhibiting Intestinal Inflammation, and Improving Intestinal Barrier Function.
    Molecules (Basel, Switzerland), 2023, Apr-25, Volume: 28, Issue:9

    Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Inflammation; Mice; Mice, Inbred C57BL; NF-kappa B; Quality of Life; Sodium Chloride; Sodium Chloride, Dietary; Toll-Like Receptor 4; Tryptophan

2023
[Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2023, Volume: 48, Issue:8

    Topics: Animals; Arachidonic Acid; Colitis; Colitis, Ulcerative; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Interleukin-6; Metabolomics; Mice; Mice, Inbred C57BL; Purines; Tryptophan; Tumor Necrosis Factor-alpha

2023
An UPLC-MS/MS method for targeted analysis of microbial and host tryptophan metabolism after administration of polysaccharides from Atractylodes macrocephala Koidz. in ulcerative colitis mice.
    Journal of pharmaceutical and biomedical analysis, 2023, Oct-25, Volume: 235

    Topics: Animals; Atractylodes; Chromatography, High Pressure Liquid; Chromatography, Liquid; Colitis; Colitis, Ulcerative; Ligands; Mice; Polysaccharides; Tandem Mass Spectrometry; Tryptophan

2023
Modulation of tryptophan metabolism via AHR-IL22 pathway mediates the alleviation of DSS-induced colitis by chitooligosaccharides with different degrees of polymerization.
    Carbohydrate polymers, 2023, Nov-01, Volume: 319

    Topics: Animals; Colitis; Inflammation; Interleukin-22; Mice; Polymerization; Tryptophan

2023
Inhibition of STAT-mediated cytokine responses to chemically-induced colitis prevents inflammation-associated neurobehavioral impairments.
    Brain, behavior, and immunity, 2023, Volume: 114

    Topics: Animals; Colitis; Cytokines; Dextran Sulfate; Indoleamine-Pyrrole 2,3,-Dioxygenase; Inflammation; Kynurenine; Male; Mice; Tryptophan

2023
Bacterial indole-3-lactic acid affects epithelium-macrophage crosstalk to regulate intestinal homeostasis.
    Proceedings of the National Academy of Sciences of the United States of America, 2023, Nov-07, Volume: 120, Issue:45

    Topics: Animals; Colitis; Dextran Sulfate; Epithelium; Intestinal Mucosa; Macrophages; Mice; Mice, Inbred C57BL; Tryptophan

2023
Fucose Ameliorates Tryptophan Metabolism and Behavioral Abnormalities in a Mouse Model of Chronic Colitis.
    Nutrients, 2020, Feb-11, Volume: 12, Issue:2

    Topics: Animals; Behavior, Animal; Bifidobacterium; Chronic Disease; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Escherichia coli; Fucose; Gastrointestinal Microbiome; Inflammation; Intestinal Mucosa; Male; Mice, Inbred C57BL; Social Behavior; Tryptophan

2020
Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism-dependent manner.
    European journal of nutrition, 2020, Volume: 59, Issue:8

    Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Tryptophan

2020
Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice.
    World journal of gastroenterology, 2020, Mar-07, Volume: 26, Issue:9

    Topics: Animals; CD4-Positive T-Lymphocytes; Colitis; Colon; Disease Models, Animal; Homeostasis; Immunosuppressive Agents; Kynurenine; Male; Mice; Mice, Inbred C57BL; Sulfates; Trinitrobenzenes; Tryptophan

2020
Dietary L-Tryptophan Regulates Colonic Serotonin Homeostasis in Mice with Dextran Sodium Sulfate-Induced Colitis.
    The Journal of nutrition, 2020, 07-01, Volume: 150, Issue:7

    Topics: Animals; Colitis; Colon; Dextran Sulfate; Diet; Dietary Supplements; Homeostasis; Male; Mice; Mice, Inbred C57BL; Piperazines; Random Allocation; Serotonin; Serotonin Antagonists; Tryptophan

2020
Serotonin Receptors Regulate Inflammatory Response in Experimental Colitis.
    The Journal of nutrition, 2020, 07-01, Volume: 150, Issue:7

    Topics: Animals; Colitis; Dextran Sulfate; Inflammation; Mice; Receptors, Serotonin; Tryptophan

2020
Protective effects of tryptophan-catabolizing Lactobacillus plantarum KLDS 1.0386 against dextran sodium sulfate-induced colitis in mice.
    Food & function, 2020, Dec-01, Volume: 11, Issue:12

    Topics: Animals; Bacteria; Colitis; Colitis, Ulcerative; Colon; Cytokines; Gastrointestinal Microbiome; Lactobacillus plantarum; Male; Mice; Mice, Inbred C57BL; Receptors, Aryl Hydrocarbon; Sulfates; Tight Junction Proteins; Tryptophan

2020
Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites.
    Pharmacological research, 2021, Volume: 164

    Topics: Animals; Anti-Inflammatory Agents; Berberine; Caco-2 Cells; Colitis; Colon; Cytokines; Dextran Sulfate; Gastrointestinal Microbiome; Humans; Male; Peroxidase; Rats, Sprague-Dawley; Receptors, Aryl Hydrocarbon; Tryptophan

2021
    Frontiers in immunology, 2021, Volume: 12

    Topics: Animals; Anti-Inflammatory Agents; Basidiomycota; Bile Acids and Salts; Colitis; Dextran Sulfate; Disease Models, Animal; Female; Forkhead Transcription Factors; Fungal Polysaccharides; Gastrointestinal Microbiome; Gram-Negative Bacteria; Gram-Positive Bacteria; Mice; Mice, Inbred C57BL; Molecular Weight; Protective Agents; RNA, Ribosomal, 16S; Signal Transduction; T-Lymphocytes, Regulatory; Treatment Outcome; Tryptophan; Tyrosine

2021
Fuzhuan Brick Tea Polysaccharide Improved Ulcerative Colitis in Association with Gut Microbiota-Derived Tryptophan Metabolism.
    Journal of agricultural and food chemistry, 2021, Aug-04, Volume: 69, Issue:30

    Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Polysaccharides; Tea; Tryptophan

2021
Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism.
    Pharmacological research, 2017, Volume: 121

    Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Male; Mice, Inbred BALB C; Pogostemon; Sesquiterpenes; Tryptophan

2017
Bifidobacteria alleviate experimentally induced colitis by upregulating indoleamine 2, 3-dioxygenase expression.
    Microbiology and immunology, 2018, Volume: 62, Issue:2

    Topics: Animals; Bifidobacterium; Colitis; Colonic Diseases; Disease Models, Animal; Female; Forkhead Transcription Factors; Indoleamine-Pyrrole 2,3,-Dioxygenase; Inflammatory Bowel Diseases; Interleukin-17; Mice; Mice, Inbred BALB C; Probiotics; T-Lymphocytes, Regulatory; Trinitrobenzenesulfonic Acid; Tryptophan; Up-Regulation

2018
Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis.
    British journal of pharmacology, 2018, Volume: 175, Issue:9

    Topics: Administration, Oral; Administration, Rectal; Animals; Colitis; Colon; Deoxycholic Acid; Dextran Sulfate; Electrochemical Techniques; Intestinal Mucosa; Male; Melatonin; Mice; Serotonin; Signal Transduction; Tryptophan

2018
1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells.
    International journal of cancer, 2018, 09-15, Volume: 143, Issue:6

    Topics: Animals; Apoptosis; Azoxymethane; Carcinogens; Cdc20 Proteins; Cell Cycle; Cell Proliferation; Colitis; Colonic Neoplasms; Enzyme Inhibitors; Homeodomain Proteins; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitosis; Tryptophan; Tumor Cells, Cultured

2018
Dietary and Microbial Oxazoles Induce Intestinal Inflammation by Modulating Aryl Hydrocarbon Receptor Responses.
    Cell, 2018, 05-17, Volume: 173, Issue:5

    Topics: Animals; Antigens, CD1d; Colitis; Diet; Disease Models, Animal; Epithelial Cells; Indoleamine-Pyrrole 2,3,-Dioxygenase; Interleukin-10; Intestines; Mice; Mice, Inbred C57BL; Mice, Knockout; Natural Killer T-Cells; Oxazoles; Receptors, Aryl Hydrocarbon; RNA Interference; RNA, Small Interfering; Signal Transduction; Tryptophan

2018
Faecal Microbiota Transplantation Reduces Susceptibility to Epithelial Injury and Modulates Tryptophan Metabolism of the Microbial Community in a Piglet Model.
    Journal of Crohn's & colitis, 2018, Nov-15, Volume: 12, Issue:11

    Topics: Animals; Colitis; Fecal Microbiota Transplantation; Gastrointestinal Microbiome; Homeostasis; Indoleacetic Acids; Interleukin-22; Interleukins; Intestinal Mucosa; Lipopolysaccharides; Mass Spectrometry; Metabolome; Receptors, Aryl Hydrocarbon; RNA, Ribosomal, 16S; Swine; Tryptophan

2018
Effects of dietary tryptophan supplementation in the acetic acid-induced colitis mouse model.
    Food & function, 2018, Aug-15, Volume: 9, Issue:8

    Topics: Acetic Acid; Animals; Colitis; Colon; Diet; Gene Expression Regulation; Mice; Random Allocation; RNA, Messenger; Tryptophan

2018
Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota.
    Pharmacological research, 2018, Volume: 137

    Topics: Animals; Anti-Inflammatory Agents; Berberine Alkaloids; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Male; Mice, Inbred BALB C; Mucins; Tight Junction Proteins; Tryptophan

2018
Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota.
    Cell host & microbe, 2018, 11-14, Volume: 24, Issue:5

    Topics: Animals; Bacterial Proteins; Colitis; Disease Models, Animal; Disease Susceptibility; Exosome Multienzyme Ribonuclease Complex; Female; Food; Gastrointestinal Microbiome; Germ-Free Life; Host-Pathogen Interactions; Immunity, Mucosal; Indoles; Interleukin-22; Interleukins; Intestines; Lacticaseibacillus rhamnosus; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Plants; Receptors, Aryl Hydrocarbon; RNA, Ribosomal, 16S; Serine Endopeptidases; Tryptophan

2018
Acute colitis induces neurokinin 1 receptor internalization in the rat lumbosacral spinal cord.
    PloS one, 2013, Volume: 8, Issue:3

    Topics: Acute Disease; Animals; Colitis; Colon; Formaldehyde; Gene Expression; Lumbosacral Region; Male; Neurokinin-1 Receptor Antagonists; Neurons; Nociception; Nociceptive Pain; Protein Transport; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-1; Spinal Cord; Substance P; Tryptophan

2013
Keeping the peace: aryl hydrocarbon receptor signaling modulates the mucosal microbiota.
    Immunity, 2013, Aug-22, Volume: 39, Issue:2

    Topics: Animals; Candida albicans; Colitis; Female; Interleukin-22; Interleukins; Limosilactobacillus reuteri; Receptors, Aryl Hydrocarbon; Th17 Cells; Tryptophan

2013
Severity of DSS-induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks.
    Scientific reports, 2015, Nov-27, Volume: 5

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Colitis; Colon; Enzyme Inhibitors; Female; Gene Expression Regulation; Gene Regulatory Networks; Indoleamine-Pyrrole 2,3,-Dioxygenase; Mice; Mice, Inbred C57BL; Mice, Knockout; Myeloid Differentiation Factor 88; NF-kappa B; Severity of Illness Index; Signal Transduction; Sodium Dodecyl Sulfate; Toll-Like Receptor 2; Toll-Like Receptor 6; Transcription, Genetic; Transcriptome; Tryptophan

2015
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.
    Nature medicine, 2016, Volume: 22, Issue:6

    Topics: Adolescent; Adult; Animals; CARD Signaling Adaptor Proteins; Chromatography, High Pressure Liquid; Colitis; Colon; Cytokines; Dextran Sulfate; Fecal Microbiota Transplantation; Female; Gastrointestinal Microbiome; Gene Expression Profiling; Humans; Inflammatory Bowel Diseases; Interleukin-22; Interleukins; Lactobacillus; Male; Mice; Mice, Knockout; Middle Aged; Receptors, Aryl Hydrocarbon; Reverse Transcriptase Polymerase Chain Reaction; RNA, Ribosomal, 16S; Tryptophan; Young Adult

2016
Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia.
    Mucosal immunology, 2017, Volume: 10, Issue:5

    Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Gene Expression Regulation; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Interferon-gamma; Interleukin-10; Interleukin-10 Receptor alpha Subunit; Intestinal Mucosa; Kynurenine; Mice; Mice, Inbred C57BL; Mice, Knockout; Promoter Regions, Genetic; Receptors, Aryl Hydrocarbon; Signal Transduction; Tryptophan; Wound Healing

2017
Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice.
    The Journal of nutritional biochemistry, 2017, Volume: 42

    Topics: Animals; Chemokines; Colitis; Colon; Cytokines; Dextran Sulfate; Dietary Supplements; Female; Interleukin-22; Interleukins; Mice, Inbred C57BL; Mice, Knockout; Peroxidase; Receptors, Aryl Hydrocarbon; STAT3 Transcription Factor; Tryptophan

2017
l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis.
    The Journal of nutritional biochemistry, 2010, Volume: 21, Issue:6

    Topics: Animal Nutrition Sciences; Animals; Apoptosis; Body Weight; Colitis; Dextrans; Disease Models, Animal; Inflammation; Interleukin-6; Mannitol; Permeability; Sulfates; Swine; Tryptophan; Tumor Necrosis Factor-alpha

2010
CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation.
    European journal of immunology, 2009, Volume: 39, Issue:6

    Topics: Adoptive Transfer; Animals; Antigens, CD; Antigens, Surface; CD4-Positive T-Lymphocytes; Cell Proliferation; Colitis; CTLA-4 Antigen; Cytokines; DNA-Binding Proteins; Enzyme Inhibitors; Immune Tolerance; Indoleamine-Pyrrole 2,3,-Dioxygenase; Interleukin-2 Receptor alpha Subunit; Lymph Nodes; Lymphocyte Activation Gene 3 Protein; Lymphopenia; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Receptors, Transforming Growth Factor beta; Spleen; T-Lymphocytes, Regulatory; Tryptophan

2009
Origins and functional basis of regulatory CD11c+CD8+ T cells.
    European journal of immunology, 2009, Volume: 39, Issue:6

    Topics: Animals; CD11c Antigen; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Differentiation; Cell Lineage; Colitis; Dendritic Cells; Disease Models, Animal; Immune Tolerance; Indoleamine-Pyrrole 2,3,-Dioxygenase; Lymphocyte Activation; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Ovalbumin; Peptide Fragments; Protein Serine-Threonine Kinases; Receptors, Antigen, T-Cell; Spleen; T-Lymphocyte Subsets; T-Lymphocytes, Regulatory; Transcription Factor CHOP; Tryptophan; Tumor Necrosis Factor Receptor Superfamily, Member 9

2009
Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.
    Gastroenterology, 2010, Volume: 139, Issue:6

    Topics: Animals; Anxiety; Behavior, Animal; Brain-Derived Neurotrophic Factor; Chronic Disease; Colitis; Cytokines; Hippocampus; Kynurenine; Male; Mice; Mice, Inbred AKR; Mice, Inbred BALB C; Proteomics; RNA, Messenger; Trichuriasis; Trichuris; Tryptophan; Vagotomy; Vagus Nerve

2010
Immunology: Malnutrition promotes rogue bacteria.
    Nature, 2012, Jul-25, Volume: 487, Issue:7408

    Topics: Angiotensin-Converting Enzyme 2; Animals; Colitis; Female; Intestines; Male; Malnutrition; Metagenome; Peptidyl-Dipeptidase A; Tryptophan

2012
ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation.
    Nature, 2012, Jul-25, Volume: 487, Issue:7408

    Topics: Angiotensin-Converting Enzyme 2; Animals; Biocatalysis; Colitis; Dextran Sulfate; Diarrhea; Dietary Proteins; Female; Gene Deletion; Genetic Predisposition to Disease; Germ-Free Life; Homeostasis; Immunity, Innate; Intestines; Male; Malnutrition; Metagenome; Mice; Models, Biological; Niacinamide; Peptidyl-Dipeptidase A; Renin-Angiotensin System; TOR Serine-Threonine Kinases; Trinitrobenzenesulfonic Acid; Tryptophan

2012
[THE IMPORTANCE OF THE TRYPTOPHAN-PERCHLORIC ACID REACTION FOR DIAGNOSING THE ACTIVITY OF ULCERATIVE COLITIS].
    Deutsche Zeitschrift fur Verdauungs- und Stoffwechselkrankheiten, 1965, Volume: 24

    Topics: Clinical Laboratory Techniques; Colitis; Colitis, Ulcerative; Humans; Perchlorates; Tryptophan

1965
Colon-specific, mutual azo prodrug of 5-aminosalicylic acid with L-tryptophan: synthesis, kinetic studies and evaluation of its mitigating effect in trinitrobenzenesulfonic acid-induced colitis in rats.
    Bioorganic & medicinal chemistry, 2007, Jul-15, Volume: 15, Issue:14

    Topics: Animals; Azo Compounds; Body Weight; Colitis; Kinetics; Mesalamine; Molecular Structure; Organ Size; Prodrugs; Rats; Trinitrobenzenesulfonic Acid; Tryptophan

2007
The role of medial hypothalamic serotonin in the suppression of feeding in a rat model of colitis.
    Gastroenterology, 2000, Volume: 118, Issue:3

    Topics: Amino Acids; Animals; Anorexia; Colitis; Drinking; Eating; Fenclonine; Hydroxyindoleacetic Acid; Hypothalamus; Hypothalamus, Middle; Male; Paraventricular Hypothalamic Nucleus; Rats; Rats, Wistar; Serotonin; Serotonin Antagonists; Tissue Distribution; Tryptophan

2000
Pellagra with colitis due to a defect in tryptophan metabolism.
    European journal of pediatrics, 1991, Volume: 150, Issue:7

    Topics: Child; Colitis; Female; Humans; Kynurenine 3-Monooxygenase; Mixed Function Oxygenases; Niacinamide; Pellagra; Tryptophan

1991
[Amino acid levels in the blood serum of patients with chronic colitis].
    Terapevticheskii arkhiv, 1974, Volume: 46, Issue:4

    Topics: Adult; Alanine; Amino Acids; Ammonia; Arginine; Aspartic Acid; Betaine; Chronic Disease; Citrulline; Colitis; Glutamates; Glutamine; Glycine; Histidine; Humans; Middle Aged; Ornithine; Phenylalanine; Proline; Serine; Taurine; Threonine; Tryptophan; Tyrosine; Urea

1974