troxerutin and Kidney-Diseases

troxerutin has been researched along with Kidney-Diseases* in 3 studies

Other Studies

3 other study(ies) available for troxerutin and Kidney-Diseases

ArticleYear
Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 2020, Volume: 393, Issue:5

    Unilateral ureteral obstruction (UUO) induces renal injury and troxerutin attenuates the inflammatory parameters and decreases oxidative stress. Accordingly, this study explored the renoprotective effect of troxerutin in UUO-induced renal oxidative stress, inflammation, and apoptosis in male Wistar rats. Animals were randomly separated into five groups (n = 8): control, UUO, and three UUO groups treated with troxerutin (1, 10, and 100 mg/kg). UUO-induced and vehicle/troxerutin administration was continued for 3 days. Then serum creatinine, mean arterial pressure (MAP), renal perfusion pressure (RPP), renal vascular resistance (RVR), and renal blood flow (RBF) were measured. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels as some oxidative stress parameters were measured in the left kidney. The immunoblotting method was applied to evaluate the cleaved caspase-3 Bax, Bcl-2, and TNF-α proteins level. The hematoxylin and eosin method was used to assess the kidney tissue damage score (KTDS). In 3 days, UUO significantly increased serum creatinine level, KTDS, RVR, MDA, Bax, cleaved caspase-3, and TNF-α protein levels (p < 0.05); and decreased RBF, TAC, SOD, catalase, GPx activity levels and Bcl-2 protein expression level in the left kidney (p < 0.05). Troxerutin (100 mg/kg) significantly attenuates the indicators alteration induced by UUO. Our findings represented that the renoprotective effect of troxerutin may be related to its anti-oxidative stress, anti-inflammation, anti-apoptosis, and RBF improver properties.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Apoptosis Regulatory Proteins; Disease Models, Animal; Hemodynamics; Hydroxyethylrutoside; Inflammation Mediators; Kidney; Kidney Diseases; Lipid Peroxidation; Male; Oxidative Stress; Rats, Wistar; Renal Circulation; Signal Transduction; Tumor Necrosis Factor-alpha; Ureteral Obstruction

2020
Troxerutin Reduces Kidney Damage against BDE-47-Induced Apoptosis via Inhibiting NOX2 Activity and Increasing Nrf2 Activity.
    Oxidative medicine and cellular longevity, 2017, Volume: 2017

    2,2,4,4-Tetrabromodiphenyl ether (BDE-47), one of the persistent organic pollutants, seriously influences the quality of life; however, its pathological mechanism remains unclear. Troxerutin is a flavonoid with pharmacological activity of antioxidation and anti-inflammation. In the present study, we investigated troxerutin against BDE-47-induced kidney cell apoptosis and explored the underlying mechanism. The results show that troxerutin reduced renal cell apoptosis and urinary protein secretion in BDE-47-treated mice. Western blot analysis shows that troxerutin supplement enhanced the ratio of Bcl-2/Bax; inhibited the release of cytochrome c from mitochondria, the activation of procaspase-9 and procaspase-3, and the cleavage of PARP; and reduced FAS, FASL, and caspase-8 levels induced by BDE-47. In addition, troxerutin decreased the production of reactive oxygen species (ROS) and increased the activities of antioxidative enzymes. Furthermore, troxerutin blunted Nrf2 ubiquitylation, enhanced the activity of Nrf2, decreased the activity of NOX2, and ameliorated kidney oxidant status of BDE-47-treated mice. Together, these results confirm that troxerutin could alleviate the cytotoxicity of BDE-47 through antioxidation and antiapoptosis, which suggests that its protective mechanism is involved in the inhibition of apoptosis via suppressing NOX2 activity and increasing Nrf2 signaling pathway.

    Topics: Animals; Anticoagulants; Apoptosis; Halogenated Diphenyl Ethers; Hydroxyethylrutoside; Kidney; Kidney Diseases; Male; Mice; NF-E2-Related Factor 2

2017
Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation.
    International immunopharmacology, 2009, Volume: 9, Issue:1

    This study was carried out to investigate the protective effect of troxerutin against D-galactose (D-gal)-induced renal injury in mice. Hematoxylin and eosin (H&E) stained sections of kidneys revealed D-gal could cause renal injury and troxerutin could significantly attenuate the injury. We further investigated the mechanisms involved in the protective effects of troxerutin on mouse kidney. The following antioxidant defense enzymes were measured: cytosolic Cu/Zn superoxide dismutase (SOD-1), catalase (CAT) and glutathione peroxidase (GPx). The content of the lipid peroxidation product malondialdehyde (MDA) was also analyzed. In D-gal-treated mice, antioxidant enzymes activities were significantly decreased and the level of MDA was significantly higher than those in the vehicle controls. Our results indicated that the protective effect of troxerutin against D-gal induced renal injury might be caused, at least in part, by increasing the activity of antioxidant enzymes with a reduction in lipid peroxidation product. Furthermore, we also examined the inflammatory signal mediators of nuclear factor-kappaB (NF-kappaB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanoid receptor subtype EP2 by Western blot. After treatment with D-gal, the NF-kappaB p65, iNOS, COX-2 and EP2 were markedly upregulated. Upon co-treatment with the troxerutin, however, the expressions of the NF-kappaB p65, iNOS, COX-2 and EP2 markedly reduced, compared to D-gal treatment alone. These results indicated that troxerutin has significantly inhibitory effects on the NF-kappaB-mediated inflammatory response. These findings suggest troxerutin could attenuate renal injury induced by D-gal probably through its antioxidant and anti-inflammation properties.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Biomarkers; Blotting, Western; Catalase; Galactose; Glutathione Peroxidase; Hydroxyethylrutoside; Immunohistochemistry; Kidney; Kidney Diseases; Lipid Peroxidation; Male; Malondialdehyde; Mice; Oxidative Stress; Superoxide Dismutase

2009