troxerutin has been researched along with Acute-Kidney-Injury* in 3 studies
3 other study(ies) available for troxerutin and Acute-Kidney-Injury
Article | Year |
---|---|
Targeting inflammation, autophagy, and apoptosis by troxerutin attenuates methotrexate-induced renal injury in rats.
Troxerutin, a bioflavonoid with marked immune-modulatory and antioxidant features, has been proven to ameliorate experimental cardiotoxicity, hepatotoxicity, and neurodegeneration. However, its impact on methotrexate (MTX)-induced nephrotoxicity has not been investigated. In the current work, we aimed to investigate the potential of troxerutin to combat MTX-triggered renal injury, exploring immune cell infiltration, inflammation, autophagy, and apoptosis, with emphasis on the HMGB1/RAGE/NF-κB, AMPK/mTOR, and Nrf2/HO-1 pathways.. Troxerutin (150 mg/kg/day) was administered by oral gavage and the renal tissues were examined with the aid of biochemical assays, ELISA, histology, and immunohistochemistry.. Troxerutin mitigated MTX-induced renal dysfunction by significantly lowering creatinine, BUN, and KIM-1 alongside immune-cell infiltration and histopathologic aberrations. These favorable effects were mediated by inhibition of HMGB1/RAGE/NF-κB cascade via downregulating the protein expression of HMGB1, RAGE, and nuclear NF-κBp65 alongside its downstream signals, including COX-2 and TNF-α. Moreover, troxerutin activated the autophagy flux as evidenced by upregulating renal Beclin 1, lowering p62 SQSTM1 accumulation, and activation of AMPK/mTOR pathway, seen by increasing p-AMPK/total AMPK and lowering p-mTOR/total mTOR signals. In tandem, troxerutin combated renal apoptotic changes as proven with lowering caspase-3 activity, Bax expression, and Bax/Bcl-2 ratio and upregulating the proliferation signal PCNA. Additionally, the oxidative insult was attenuated by troxerutin, as evidenced by lowering NOX-1 and lipid peroxides, replenishing GSH, GPx, and SOD antioxidants, and activating Nrf2/HO-1 pathway.. Troxerutin attenuated MTX-triggered renal injury via inhibition of inflammation and apoptosis alongside activation of autophagy. Thus, it may serve as an adjunct modality for the management of MTX-linked nephrotoxicity. Topics: Acute Kidney Injury; Animals; Apoptosis; Autophagy; Disease Models, Animal; Humans; Hydroxyethylrutoside; Inflammation; Male; Methotrexate; Oxidative Stress; Rats; Rats, Wistar; Signal Transduction; Vasoconstrictor Agents | 2022 |
Treatment with troxerutin protects against cisplatin-induced kidney injury in mice.
Cisplatin (CP) is a synthetic and anticancer drug, and one of the major side effects of CP is nephrotoxicity. This study was done to evaluate the renoprotective effects of troxerutin (Tro) in nephrotoxicity induced by CP in male mice.. In this experimental study, 28 male mice were divided randomly into four groups. Mice were treated with CP (20 mg/kg, i.p.) then Tro (75 and 150 mg/kg/day, po) was administered for three consecutive days. Blood samples were collected to determine serum creatinine (Cr) and blood urea nitrogen (BUN) levels. The kidney tissues were used for histological examination and biochemical assays. Malondialdehyde (MDA) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity were assessed in renal tissue.. Results showed a significant increase in the Cr, BUN and MDA levels and a significant decrease in the renal SOD and GPx activity by CP administration. Treatment with Tro for three consecutive days attenuated these changes. Also, the renoprotective effect of the Tro was confirmed by the histological examination of the kidneys.. Our results demonstrated that Tro has protective effects against CP-induced nephrotoxicity through improving the biochemical indices and the oxidative stress parameters. Topics: Acute Kidney Injury; Animals; Anticoagulants; Antineoplastic Agents; Biomarkers; Cisplatin; Disease Models, Animal; Hydroxyethylrutoside; Male; Mice; Oxidative Stress | 2019 |
Troxerutin down-regulates KIM-1, modulates p38 MAPK signaling, and enhances renal regenerative capacity in a rat model of gentamycin-induced acute kidney injury.
Gentamycin is an aminoglycoside antibiotic that is widely employed for controlling Gram negative bacterial infections including that caused by the antibiotic-resistant Pseudomonas species. The clinical use of gentamycin is substantially limited by its side effects particularly acute kidney injury (AKI). The aim of the current study was to investigate the protective effect of the plant flavonoid troxerutin (150 mg kg-1 day-1 for 15 days) against gentamycin-induced AKI using Wistar rats as an experimental mammalian model. The results of the present work revealed that troxerutin significantly improved renal function as demonstrated by the increase in the glomerular filtration rate and the decrease in the levels of urinary albumin, urinary albumin to creatinine ratio, serum creatinine, and blood urea nitrogen (p < 0.001). In addition, troxerutin significantly attenuated gentamycin-induced renal tissue injury as indicated by the decreased protein expression of the renal tubular injury marker KIM-1, the attenuation of the renal histopathological changes, and the modulation of the oxidative stress markers as reflected by the decrease in the levels of lipid and protein oxidative modifications and the increase in the levels of reduced glutathione and total antioxidant capacity (p < 0.001). Furthermore, troxerutin down-regulated the levels of inflammatory cytokines (IL-10, TNF-α, and IL-6), attenuated apoptotic cell death, and enhanced the renal tissue regenerative capacity as demonstrated by the increase in the protein expression of the proliferating cell nuclear antigen, PCNA (p < 0.001). Collectively, the results of the current study highlight, for the first time, the ameliorating effects of troxerutin against gentamycin-induced AKI in rats that is potentially mediated via the modulation of p38 MAPK signaling as well as via antioxidant, anti-inflammatory and anti-apoptotic activities. Topics: Acute Kidney Injury; Animals; Apoptosis; Cell Adhesion Molecules; Gentamicins; Humans; Hydroxyethylrutoside; Kidney; Male; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Wistar; Regeneration; Signal Transduction | 2018 |