troglitazone-sulfate and Chemical-and-Drug-Induced-Liver-Injury

troglitazone-sulfate has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 2 studies

Other Studies

2 other study(ies) available for troglitazone-sulfate and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury.
    The Journal of pharmacology and experimental therapeutics, 2015, Volume: 353, Issue:2

    The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.

    Topics: Adult; Animals; Bile Ducts; Biological Transport; Cells, Cultured; Chemical and Drug Induced Liver Injury; Chromans; Dehydroepiandrosterone; Female; Hepatocytes; Humans; Male; Middle Aged; Multidrug Resistance-Associated Proteins; Rats; Species Specificity; Sulfuric Acid Esters; Taurocholic Acid; Thiazolidinediones; Troglitazone

2015
Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity.
    Drug metabolism and disposition: the biological fate of chemicals, 2004, Volume: 32, Issue:3

    Troglitazone is a thiazolidinedione insulin sensitizer drug that is metabolized mainly to a sulfate conjugate (M-1) in humans. It was reported to cause hepatotoxicity, although the cause has not been fully clarified. The objective of this study was to identify whether organic anion transporting polypeptide (OATP) transporters expressed at the basolateral membrane of human hepatocytes participate in troglitazone-associated hepatotoxicity. When OATP-B, OATP-C, or OATP8 was expressed in Xenopus oocytes, the transporter-mediated uptake into oocytes of troglitazone sulfate conjugate and the inhibitory effects of thiazolidinediones and the metabolites of troglitazone on estrone-3-sulfate transport were measured. M-1 was transported well by OATP-C but was not transported by OATP-B. OATP8 showed weak, but not statistically significant, transport of M-1. M-1 exhibited a strong inhibitory effect on estrone-3-sulfate transport by OATP-C and OATP8, suggesting a higher affinity than other thiazolidinediones and the metabolites of troglitazone, glucuronide conjugate and quinone metabolite. In conclusion, the sulfate conjugate of troglitazone has a higher affinity for OATPs than troglitazone itself or other metabolites. Since OATP transporters are important in the hepatic handling of bile acids, bilirubin, and other endogenous anionic compounds, M-1 may disturb the hepatic influx and efflux transport of these endogenous molecules across the basolateral membranes. Moreover, OATP-C may be involved in the hepatic toxicity of troglitazone through the inhibitory action of M-1.

    Topics: Biological Transport, Active; Chemical and Drug Induced Liver Injury; Chromans; Cloning, Molecular; DNA, Complementary; Estrone; Hepatocytes; Humans; Hypoglycemic Agents; Molecular Sequence Data; Oocytes; Organic Anion Transporters; Pioglitazone; Protein Binding; Quinones; Reverse Transcriptase Polymerase Chain Reaction; Thiazolidinediones; Troglitazone

2004