tro-40303 and Myocardial-Infarction

tro-40303 has been researched along with Myocardial-Infarction* in 4 studies

Trials

3 trial(s) available for tro-40303 and Myocardial-Infarction

ArticleYear
Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results.
    European heart journal, 2015, Jan-07, Volume: 36, Issue:2

    The MITOCARE study evaluated the efficacy and safety of TRO40303 for the reduction of reperfusion injury in patients undergoing revascularization for ST-elevation myocardial infarction (STEMI).. Patients presenting with STEMI within 6 h of the onset of pain randomly received TRO40303 (n = 83) or placebo (n = 80) via i.v. bolus injection prior to balloon inflation during primary percutaneous coronary intervention in a double-blind manner. The primary endpoint was infarct size expressed as area under the curve (AUC) for creatine kinase (CK) and for troponin I (TnI) over 3 days. Secondary endpoints included measures of infarct size using cardiac magnetic resonance (CMR) and safety outcomes.. The median pain-to-balloon time was 180 min for both groups, and the median (mean) door-to-balloon time was 60 (38) min for all sites. Infarct size, as measured by CK and TnI AUCs at 3 days, was not significantly different between treatment groups. There were no significant differences in the CMR-assessed myocardial salvage index (1-infarct size/myocardium at risk) (mean 52 vs. 58% with placebo, P = 0.1000), mean CMR-assessed infarct size (21.9 g vs. 20.0 g, or 17 vs. 15% of LV-mass) or left ventricular ejection fraction (LVEF) (46 vs. 48%), or in the mean 30-day echocardiographic LVEF (51.5 vs. 52.2%) between TRO40303 and placebo. A greater number of adjudicated safety events occurred in the TRO40303 group for unexplained reasons.. This study in STEMI patients treated with contemporary mechanical revascularization principles did not show any effect of TRO40303 in limiting reperfusion injury of the ischaemic myocardium.

    Topics: Angioplasty, Balloon; Area Under Curve; Cardiotonic Agents; Combined Modality Therapy; Coronary Occlusion; Double-Blind Method; Female; Humans; Magnetic Resonance Angiography; Male; Middle Aged; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocardial Infarction; Myocardial Reperfusion Injury; Oximes; Prospective Studies; Secosteroids; Treatment Outcome

2015
Translation of TRO40303 from myocardial infarction models to demonstration of safety and tolerance in a randomized Phase I trial.
    Journal of translational medicine, 2014, Feb-07, Volume: 12

    Although reperfusion injury has been shown to be responsible for cardiomyocytes death after an acute myocardial infarction, there is currently no drug on the market that reduces this type of injury. TRO40303 is a new cardioprotective compound that was shown to inhibit the opening of the mitochondrial permeability transition pore and reduce infarct size after ischemia-reperfusion in a rat model of cardiac ischemia-reperfusion injury.. In the rat model, the therapeutic window and the dose effect relationship were investigated in order to select the proper dose and design for clinical investigations. To evaluate post-ischemic functional recovery, TRO40303 was tested in a model of isolated rat heart. Additionally, TRO40303 was investigated in a Phase I randomized, double-blind, placebo controlled study to assess the safety, tolerability and pharmacokinetics of single intravenous ascending doses of the compound (0.5 to 13 mg/kg) in 72 healthy male, post-menopausal and hysterectomized female subjects at flow rates from 0.04 to 35 mL/min (EudraCT number: 2010-021453-39). This work was supported in part by the French Agence Nationale de la Recherche.. In the vivo model, TRO40303 reduced infarct size by 40% at 1 mg/kg and by 50% at 3 and 10 mg/kg given by intravenous bolus and was only active when administered before reperfusion. Additionally, TRO40303 provided functional recovery and reduced oxidative stress in the isolated rat heart model.These results, together with pharmacokinetic based allometry to human and non-clinical toxicology data, were used to design the Phase I trial. All the tested doses and flow rates were well tolerated clinically. There were no serious adverse events reported. No relevant changes in vital signs, electrocardiogram parameters, laboratory tests or physical examinations were observed at any time in any dose group. Pharmacokinetics was linear up to 6 mg/kg and slightly ~1.5-fold, hyper-proportional from 6 to 13 mg/kg.. These data demonstrated that TRO40303 can be safely administered by the intravenous route in humans at doses expected to be pharmacologically active. These results allowed evaluating the expected active dose in human at 6 mg/kg, used in a Phase II proof-of-concept study currently ongoing.

    Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Healthy Volunteers; Humans; In Vitro Techniques; Liposomes; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Oxidative Stress; Oximes; Rats; Secosteroids; Sus scrofa; Translational Research, Biomedical

2014
Rationale and design of the 'MITOCARE' Study: a phase II, multicenter, randomized, double-blind, placebo-controlled study to assess the safety and efficacy of TRO40303 for the reduction of reperfusion injury in patients undergoing percutaneous coronary in
    Cardiology, 2012, Volume: 123, Issue:4

    Treatment of acute ST-elevation myocardial infarction (STEMI) by reperfusion using percutaneous coronary intervention (PCI) or thrombolysis has provided clinical benefits; however, it also induces considerable cell death. This process is called reperfusion injury. The continuing high rates of mortality and heart failure after acute myocardial infarction (AMI) emphasize the need for improved strategies to limit reperfusion injury and improve clinical outcomes. The objective of this study is to assess safety and efficacy of TRO40303 in limiting reperfusion injury in patients treated for STEMI. TRO40303 targets the mitochondrial permeability transition pore, a promising target for the prevention of reperfusion injury. This multicenter, double-blind study will randomize patients with STEMI to TRO40303 or placebo administered just before balloon inflation or thromboaspiration during PCI. The primary outcome measure will be reduction in infarct size (assessed as plasma creatine kinase and troponin I area under the curve over 3 days). The main secondary endpoint will be infarct size normalized to the myocardium at risk (expressed by the myocardial salvage index assessed by cardiac magnetic resonance). The study is being financed under an EU-FP7 grant and conducted under the auspices of the MITOCARE research consortium, which includes experts from clinical and basic research centers, as well as commercial enterprises, throughout Europe. Results from this study will contribute to a better understanding of the complex pathophysiology underlying myocardial injury after STEMI. The present paper describes the rationale, design and the methods of the trial.

    Topics: Cardiotonic Agents; Double-Blind Method; Humans; Myocardial Infarction; Myocardial Reperfusion Injury; Oximes; Percutaneous Coronary Intervention; Research Design; Secosteroids

2012

Other Studies

1 other study(ies) available for tro-40303 and Myocardial-Infarction

ArticleYear
TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 333, Issue:3

    3,5-Seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) is a new cardioprotective compound coming from a chemical series identified initially for neuroprotective properties. TRO40303 binds specifically to the mitochondrial translocator protein 18 kDa (TSPO) at the cholesterol site. After intravenous administration, TRO40303 tissue distribution was comparable to that of TSPO, and, in particular, the drug accumulated rapidly in the heart. In a model of 35 min of myocardial ischemia/24 h of reperfusion in rats, TRO40303 (2.5 mg/kg) reduced infarct size by 38% (p < 0.01 versus control), when administered 10 min before reperfusion, which was correlated with reduced release of apoptosis-inducing factor from mitochondria to the cytoplasm in the ischemic area at risk. Although TRO40303 had no effect on the calcium retention capacity of isolated mitochondria, unlike cyclosporine A, the drug delayed mitochondrial permeability transition pore (mPTP) opening and cell death in isolated adult rat cardiomyocytes subjected to 2 h of hypoxia followed by 2 h of reoxygenation and inhibited mPTP opening in neonatal rat cardiomyocytes treated with hydrogen peroxide. The effects of TRO40303 on mPTP in cell models of oxidative stress are correlated with a significant reduction in reactive oxygen species production and subsequent calcium overload. TRO40303 is a new mitochondrial-targeted drug and inhibits mPTP triggered by oxidative stress. Its mode of action differs from that of other mPTP inhibitors such as cyclosporine A, thus providing a new pharmacological approach to study mPTP regulation. Its efficacy in an animal model of myocardial infarctions makes TRO40303 a promising new drug for the reduction of cardiac ischemia-reperfusion injury.

    Topics: Animals; Animals, Newborn; Blotting, Western; Calcium; Cardiotonic Agents; Cell Death; Cells, Cultured; Cytosol; Hydrogen Peroxide; Injections, Intravenous; Male; Membrane Potentials; Mitochondria, Heart; Mitochondrial Membranes; Myocardial Infarction; Myocytes, Cardiac; Oxidants; Oxidative Stress; Oximes; Permeability; Rats; Rats, Wistar; Reactive Oxygen Species; Secosteroids; Tissue Distribution

2010