trisialoganglioside-gt1 and Brain-Ischemia

trisialoganglioside-gt1 has been researched along with Brain-Ischemia* in 2 studies

Other Studies

2 other study(ies) available for trisialoganglioside-gt1 and Brain-Ischemia

ArticleYear
Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters.
    Anesthesiology, 2003, Volume: 99, Issue:2

    During cerebral ischemia, excess of glutamate release and dysfunction of its high affinity transport induce an accumulation of extracellular glutamate, which plays an important role in neuronal death. The authors studied the relationship among propofol neuroprotection, glutamate extracellular concentrations, and glutamate transporter activity in a model of ischemic cortical cell cultures.. Thirteen-day-old primary cortical neuronal-glial cultures were exposed to a 90-min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber, followed by reoxygenation. Propofol was added only during the OGD period, and its effect was compared to that of the N-methyl-d-aspartate receptor antagonist dizocilpine (MK-801). Twenty-four hours after the injury, cell death was quantified by lactate dehydrogenase release and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Extracellular concentrations of glutamate in culture supernatants and glutamate uptake were performed at the end of OGD period by high-performance liquid chromatography and incorporation of l-[3H]glutamate into cells, respectively.. At clinically relevant concentrations (0.05-10 microm), propofol offered protection equivalent to that of MK-801. It significantly reduced lactate dehydrogenase release and increased the reduction of MTT. At the end of the ischemic injury, propofol was able to reverse the OGD-induced increase in glutamate extracellular concentrations and decrease of glutamate uptake. The inhibition of the glial GLT1 transporter by 3-methyl-glutamate did not further modify the effect of propofol on glutamate uptake, suggesting that GLT1 was not the major target of propofol.. Propofol showed a neuroprotective effect in this in vitro model of OGD, which was apparently mediated by a GLT1-independent restoration of the glutamate uptake impaired during the injury.

    Topics: Amino Acid Transport System X-AG; Amino Acids; Anesthetics, Intravenous; Animals; Brain Ischemia; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Extracellular Space; Female; Gangliosides; Glucose; Glutamic Acid; Immunohistochemistry; L-Lactate Dehydrogenase; Microscopy, Phase-Contrast; Neurons; Neuroprotective Agents; Oxygen; Pregnancy; Propofol; Rats; Rats, Wistar; Tetrazolium Salts; Thiazoles

2003
Gangliosides prevent ischemia-induced down-regulation of protein kinase C in fetal rat brain.
    Journal of neurochemistry, 1990, Volume: 55, Issue:6

    Complete obstruction of the maternal blood flow to fetal rats at 20 days of gestation for a period of 10 min causes a significant shift of approximately 22% in protein kinase C (PKC) activity from a cytosolic to a membrane-bound form in the fetal brain. This translocation can be entirely reversed without losses in activity by a single intraperitoneal injection into the gravid rat of either a mixture of disialo- and trisialoganglioside [polysialoganglioside (PSG)] or by GM1 (50 mg/kg of body weight) given 3 h before onset of the ischemic episode. Cessation of blood flow for 15 min followed by a reperfusion period of 24 h results in a 47% loss in total PKC activity. This down-regulation can be almost entirely prevented upon intraperitoneal administration of GM1 3 h before, but also during and even 90 min after the onset of ischemia. The PSG mixture is also effective, particularly when given 3 h before the insult. Down-regulation of PKC is accompanied by an increase in a Ca2(+)-phosphatidylserine-independent kinase [protein kinase M (PKM)] activity, which rises from 30 pmol/min/mg of protein in control animals to a maximal value of 83.1 pmol/min/mg of protein after 15 min of ischemia and 6 h of reperfusion. By 24 h, PKM activity is 46.8 pmol/min/mg of protein. Administration of GM1 blocks completely the appearance of PKM, a result suggesting that PKC down-regulation and PKM activity elevation are intimately associated events and that both are regulated by GM1 ganglioside.

    Topics: Animals; Brain; Brain Ischemia; Down-Regulation; G(M1) Ganglioside; Gangliosides; Protein Kinase C; Rats

1990