tris(2-pyridylmethyl)amine has been researched along with Carcinoma--Squamous-Cell* in 2 studies
2 other study(ies) available for tris(2-pyridylmethyl)amine and Carcinoma--Squamous-Cell
Article | Year |
---|---|
PKK deletion in basal keratinocytes promotes tumorigenesis after chemical carcinogenesis.
Squamous cell carcinoma (SCC) of the skin is a keratinocyte malignancy characterized by tumors presenting on sun-exposed areas with surgery being the mainstay treatment. Despite advances in targeted therapy in other skin cancers, such as basal cell carcinoma and melanoma, there have been no such advances in the treatment of SCC. This is partly due to an incomplete knowledge of the pathogenesis of SCC. We have recently identified a protein kinase C-associated kinase (PKK) as a potential tumor suppressor in SCC. We now describe a novel conditional PKK knockout mouse model, which demonstrates that PKK deficiency promotes SCC formation during chemically induced tumorigenesis. Our results further support that PKK functions as a tumor suppressor in skin keratinocytes and is important in the pathogenesis of SCC of the skin. We further define the interactions of keratinocyte PKK with TP63 and NF-κB signaling, highlighting the importance of this protein as a tumor suppressor in SCC development. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Carcinogens; Carcinoma, Squamous Cell; Cell Transformation, Neoplastic; Genes, Tumor Suppressor; Humans; Keratinocytes; Mice; Mice, Knockout; Protein Serine-Threonine Kinases; Pyridines; Signal Transduction; Skin Neoplasms | 2018 |
Protein kinase C delta overexpressing transgenic mice are resistant to chemically but not to UV radiation-induced development of squamous cell carcinomas: a possible link to specific cytokines and cyclooxygenase-2.
Protein kinase C delta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the novel PKCs (delta, epsilon, and eta) expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately 8-fold) PKCdelta protein in basal epidermal cells and cells of the hair follicle are resistant to the development of both skin papillomas and squamous cell carcinoma (SCC) elicited by 7,12-dimethylbenz(a)anthracene initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion protocol. We now present that PKCdelta overexpression in transgenic mice failed to suppress the induction of SCC developed by repeated exposures to UV radiation (UVR), the environmental carcinogen linked to the development of human SCC. Both TPA and UVR treatment of wild-type mice (a) increased the expression of proliferating cell nuclear antigen (PCNA) and apoptosis; (b) stimulated the expression of cytokines tumor necrosis factor-alpha (TNF-alpha), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte CSF (G-CSF); and (c) increased cyclooxygenase-2 (COX-2) expression and expression of phosphorylated Akt (p-Akt), p38, extracellular signal-regulated kinase-1 (ERK1), and ERK2. PKCdelta overexpression in transgenic mice enhanced TPA-induced but not UVR-induced apoptosis and suppressed TPA-stimulated but not UVR-stimulated levels of cell PCNA, cytokines (TNF-alpha, G-CSF, and GM-CSF), and the expression of COX-2, p-Akt, and p38. The results indicate that UVR-mediated signal transduction pathway to the induction of SCC does not seem to be sensitive to PKCdelta overexpression. The proapoptotic activity of PKCdelta coupled with its ability to suppress TPA-induced expression of proinflammatory cytokines, COX-2 expression, and the phosphorylation of Akt and p38 may play roles in the suppression of TPA-promoted development of SCC. Topics: Animals; Apoptosis; Carcinogens; Carcinoma, Squamous Cell; Cyclooxygenase 2; Cytokines; Gene Expression Profiling; Mice; Mice, Transgenic; Oncogene Protein v-akt; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Kinase C-delta; Pyridines; Skin Neoplasms; Ultraviolet Rays; Up-Regulation | 2006 |