Page last updated: 2024-10-20

trimethyloxamine and Cardiac Remodeling, Ventricular

trimethyloxamine has been researched along with Cardiac Remodeling, Ventricular in 2 studies

trimethyloxamine: used in manufacture of quaternary ammonium cpds; insect attractant; warming agent for gas; oxidant; structure
trimethylamine N-oxide : A tertiary amine oxide resulting from the oxidation of the amino group of trimethylamine.

Research Excerpts

ExcerptRelevanceReference
"Background Patients at increased risk for coronary artery disease and adverse prognosis during heart failure exhibit increased levels of circulating trimethylamine N-oxide (TMAO), a metabolite formed in the metabolism of dietary phosphatidylcholine."3.96Nonlethal Inhibition of Gut Microbial Trimethylamine N-oxide Production Improves Cardiac Function and Remodeling in a Murine Model of Heart Failure. ( Goodchild, TT; Gupta, N; Hazen, SL; Lefer, DJ; Li, Z; Organ, CL; Polhemus, DJ; Sharp, TE; Tang, WHW, 2020)
"Cardiac function, plasma TMAO level, cardiac hypertrophy and fibrosis, expression of inflammatory, electrophysiological studies and signaling pathway were analyzed at the sixth week after AB surgery."1.563,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. ( Fu, H; Huang, H; Jiang, X; Kong, B; Shuai, W; Wang, G, 2020)

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's2 (100.00)2.80

Authors

AuthorsStudies
Wang, G1
Kong, B1
Shuai, W1
Fu, H1
Jiang, X1
Huang, H1
Organ, CL1
Li, Z1
Sharp, TE1
Polhemus, DJ1
Gupta, N1
Goodchild, TT1
Tang, WHW1
Hazen, SL1
Lefer, DJ1

Other Studies

2 other studies available for trimethyloxamine and Cardiac Remodeling, Ventricular

ArticleYear
3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice.
    The Journal of nutritional biochemistry, 2020, Volume: 78

    Topics: Animals; Cardiomegaly; Disease Models, Animal; Echocardiography; Electrocardiography; Fibroblasts; H

2020
Nonlethal Inhibition of Gut Microbial Trimethylamine N-oxide Production Improves Cardiac Function and Remodeling in a Murine Model of Heart Failure.
    Journal of the American Heart Association, 2020, 05-18, Volume: 9, Issue:10

    Topics: Animals; Bacteria; Bacterial Proteins; Choline; Disease Models, Animal; Down-Regulation; Enzyme Inhi

2020