trimethyloxamine has been researched along with Cardiac Hypertrophy in 4 studies
trimethyloxamine: used in manufacture of quaternary ammonium cpds; insect attractant; warming agent for gas; oxidant; structure
trimethylamine N-oxide : A tertiary amine oxide resulting from the oxidation of the amino group of trimethylamine.
Cardiac Hypertrophy: Enlargement of the HEART due to chamber HYPERTROPHY, an increase in wall thickness without an increase in the number of cells (MYOCYTES, CARDIAC). It is the result of increase in myocyte size, mitochondrial and myofibrillar mass, as well as changes in extracellular matrix.
Excerpt | Relevance | Reference |
---|---|---|
"Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis." | 7.83 | Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Failure. ( Bhushan, S; Bradley, J; Hazen, SL; Lefer, DJ; Organ, CL; Otsuka, H; Polhemus, DJ; Tang, WH; Trivedi, R; Wang, Z; Wu, Y, 2016) |
"2% adenine diet for 14 weeks developed CKD with elevated plasma levels of TMAO, provision of a non-lethal inhibitor of gut microbial trimethylamine (TMA) production, iodomethylcholine (IMC), significantly reduced multiple markers of renal injury (plasma creatinine, cystatin C, FGF23, and TMAO), reduced histopathologic evidence of fibrosis, and markedly attenuated development of microalbuminuria." | 4.02 | Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. ( Charugundla, S; Guo, F; Hazen, SL; Jia, X; Kaczor-Urbanowicz, KE; Lusis, AJ; Magyar, C; Miikeda, A; Nicholas, SB; Pellegrini, M; Shih, DM; Wang, Z; Zhang, W; Zhou, Z; Zuckerman, J, 2021) |
"Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis." | 3.83 | Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Failure. ( Bhushan, S; Bradley, J; Hazen, SL; Lefer, DJ; Organ, CL; Otsuka, H; Polhemus, DJ; Tang, WH; Trivedi, R; Wang, Z; Wu, Y, 2016) |
"Cardiac function, plasma TMAO level, cardiac hypertrophy and fibrosis, expression of inflammatory, electrophysiological studies and signaling pathway were analyzed at the sixth week after AB surgery." | 1.56 | 3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. ( Fu, H; Huang, H; Jiang, X; Kong, B; Shuai, W; Wang, G, 2020) |
"Additionally, TMAO treatment induced cardiac hypertrophy and cardiac fibrosis in SD rats." | 1.51 | Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. ( Chen, M; Deng, Y; Li, Z; Liu, H; Liu, Q; Ou, C; Wu, Z; Yan, J, 2019) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (50.00) | 24.3611 |
2020's | 2 (50.00) | 2.80 |
Authors | Studies |
---|---|
Wang, G | 1 |
Kong, B | 1 |
Shuai, W | 1 |
Fu, H | 1 |
Jiang, X | 1 |
Huang, H | 1 |
Zhang, W | 1 |
Miikeda, A | 1 |
Zuckerman, J | 1 |
Jia, X | 1 |
Charugundla, S | 1 |
Zhou, Z | 1 |
Kaczor-Urbanowicz, KE | 1 |
Magyar, C | 1 |
Guo, F | 1 |
Wang, Z | 2 |
Pellegrini, M | 1 |
Hazen, SL | 2 |
Nicholas, SB | 1 |
Lusis, AJ | 1 |
Shih, DM | 1 |
Li, Z | 1 |
Wu, Z | 1 |
Yan, J | 1 |
Liu, H | 1 |
Liu, Q | 1 |
Deng, Y | 1 |
Ou, C | 1 |
Chen, M | 1 |
Organ, CL | 1 |
Otsuka, H | 1 |
Bhushan, S | 1 |
Bradley, J | 1 |
Trivedi, R | 1 |
Polhemus, DJ | 1 |
Tang, WH | 1 |
Wu, Y | 1 |
Lefer, DJ | 1 |
4 other studies available for trimethyloxamine and Cardiac Hypertrophy
Article | Year |
---|---|
3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice.
Topics: Animals; Cardiomegaly; Disease Models, Animal; Echocardiography; Electrocardiography; Fibroblasts; H | 2020 |
Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice.
Topics: Adenine; Albuminuria; Animals; Cardiomegaly; Choline; Disease Models, Animal; Female; Fibroblast Gro | 2021 |
Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis.
Topics: Animals; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Fibrosis; Gastrointestinal Microbiom | 2019 |
Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Failure.
Topics: Animals; Bacteria; Cardiomegaly; Choline; Diet; Disease Models, Animal; Disease Progression; Fibrosi | 2016 |