trifolirhizin has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for trifolirhizin and Disease-Models--Animal
Article | Year |
---|---|
Trifolirhizin regulates the balance of Th17/Treg cells and inflammation in the ulcerative colitis mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome.
Ulcerative colitis (UC) is a chronic and recurrent autoimmune disease, characterized by recurrence and remission of mucosal inflammation. Although the understanding of the pathogenesis of UC has been improved, effective therapeutic drugs are required for treating patients with UC. In current work, the mouse model of colitis was established. Trifolirhizin was demonstrated to improve symptom in dextran sulfate sodium (DSS)-induced colitis mice. The body weight of mice was elevated, whereas the disease activity index (DAI) was reduced. Moreover, trifolirhizin was involved in inhibition of inflammation and regulation of the balance of T helper 17 (Th 17) cells and regulatory T (Treg) cells in DSS-induced colitis mice. Further, the activation NLRP3 inflammasome was suppressed by trifolirhizin in DSS-induced colitis mice. Trifolirhizin was also identified to regulate AMP-activated protein kinase (AMPK)-thioredoxin-interacting protein (TXNIP) pathway. The trifolirhizin-mediated anti-inflammatory effect was inhibited by suppressing AMPK in DSS-induced UC mice. In summary, the research suggested that administration of trifolirhizin significantly improved the symptoms and the pathological damage in DSS-induced UC mice. Trifolirhizin regulated the balance of Th17/Treg cells and inflammation in the UC mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome. Topics: AMP-Activated Protein Kinases; Animals; Carrier Proteins; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Glucosides; Heterocyclic Compounds, 4 or More Rings; Inflammasomes; Inflammation; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; T-Lymphocytes, Regulatory; Th17 Cells; Thioredoxins | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |