tricin has been researched along with Inflammation* in 5 studies
5 other study(ies) available for tricin and Inflammation
Article | Year |
---|---|
Tricin attenuates the progression of LPS-induced severe pneumonia in bronchial epithelial cells by regulating AKT and MAPK signaling pathways.
Pneumonia is a continuous and widespread disease with higher incidence, the effects of it on human life can be fearful. Tricin has been demonstrated to take part in the progression and development of diseases. However, the function of Tricin and its related regulatory pathways remain unclear. This study was planned to investigate the effects of Tricin on severe pneumonia.. The cell viability was detected through CCK-8 assay. The TNF-α, IL-1β and IL-6 levels were assessed through ELISA and RT-qPCR. The levels of MDA, SOD and GSH were tested through corresponding commercial kits. The protein expressions were examined through western blot.. In our study, the lipopolysaccharide (LPS) was firstly used to stimulate cell model for severe pneumonia. We discovered that Tricin had no toxic effects on BEAS-2B cells and the decreased cell viability induced by LPS was relieved by a dose-dependent Tricin treatment. Additionally, through ELISA and RT-qPCR, it was uncovered that Tricin reduced the LPS-induced inflammation through regulating TNF-α, IL-1β and IL-6. Furthermore, Tricin relieved LPS-induced oxidative stress through reducing MDA level and enhancing SOD and GSH levels. Finally, it was demonstrated that Tricin retarded LPS-activated AKT and MAPK pathways.. Our findings revealed that Tricin attenuated the progression of LPS induced severe pneumonia through modulating AKT and MAPK signaling pathways. This discovery might afford one novel sight for the treatment of severe pneumonia. Topics: Epithelial Cells; Flavonoids; Humans; Inflammation; Interleukin-6; Lipopolysaccharides; MAP Kinase Signaling System; Pneumonia; Proto-Oncogene Proteins c-akt; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2022 |
Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway.
Rhynchosia minima root, a folk herbal medicine in southern China, is used to relieve itch and swelling. In this study, we examined the anti-inflammatory property of an ethanol fraction (EEF6) from R. minima root on lipopolysaccharide (LPS)-induced RAW 264.7 cells, as well as its underlying mechanism. The compound composition of EEF6 was determined by high-performance liquid chromatography-mass spectrometry. The result showed that five flavonoids compounds, 2',4',5,7-tetrahydroxyisoflavone, genistein-8-C-glucopyranoside, tricin, genistein, and daidzein, were identified in EEF6. In addition, EEF6 exhibited potent anti-inflammatory ability against LPS-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathways by decreasing the secretion of nitric oxide (NO), interleukin (IL)-6, TNF-α, and monocyte chemotactic protein (MCP)-1, inhibiting the translocation of p65 from cytoplasm to nucleus, and suppressing the phosphorylation of ERK, JNK, and p38. These results indicated that EEF6 could be a promising ingredient for inflammation management. Topics: Animals; Anti-Inflammatory Agents; Cell Line; Cytokines; Fabaceae; Flavonoids; Genistein; Inflammation; Interleukin-6; Isoflavones; Lipopolysaccharides; Macrophages; MAP Kinase Signaling System; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Phosphorylation; Plant Roots; RAW 264.7 Cells; Signal Transduction; Tumor Necrosis Factor-alpha | 2020 |
Anti-inflammatory effect of tricin isolated from Alopecurus aequalis Sobol. on the LPS-induced inflammatory response in RAW 264.7 cells.
The aim of this study was to identify major anti-inflammatory compounds in Alopecurus aequalis Sobol. (A. aequalis). The ethanol extract and the hexane-, dichloromethane-, ethyl acetate- and n-butanol-soluble fractions derived from A. aequalis were evaluated in order to determine their inhibitory effects on nitric oxide (NO) production in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The ethanol extract decreased NO production in a dose-dependent manner without any evidence of cytotoxicity at a concentration range of 0-200 µg/ml. The ethyl acetate soluble fraction was the most potent among the four soluble fractions. A compound was isolated by reversed-phase high-performance liquid chromatography from the ethyl acetate soluble fraction and this was identified to be tricin. Tricin inhibited the LPS-induced NO production in a dose-dependent manner without any evidence of cytotoxity at a concentration range of 1-100 µg/ml. Tricin also inhibited the LPS-induced production of prostaglandin E2. Western blot analysis indicated that tricin decreased the LPS-induced increase in the protein levels of inducible NO synthase and cyclooxygenase. In addition, tricin suppressed the production of intracellular reactive oxygen species in the LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, our results clearly indicate that tricin is a major functional anti-inflammatory compound which can be isolated from A. aequalis extracts. Topics: Animals; Anti-Inflammatory Agents; Cell Survival; Cyclooxygenase 2; Ethanol; Flavonoids; Inflammation; Inflammation Mediators; Lipopolysaccharides; Mice; Nitric Oxide; Nitric Oxide Synthase Type II; Plant Extracts; Poaceae; RAW 264.7 Cells; Reactive Oxygen Species; Solubility | 2016 |
Anti-inflammatory components of Chrysanthemum indicum flowers.
One new octulosonic acid derivative, chrysannol A (1), along with 17 known compounds (2-18), were isolated from Chrysanthemum indicum flowers. Their structures were determined from 1D NMR, 2D NMR, HR-ESI-MS spectral data, and comparisons with previous reports. The effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compound 8 showed the highest inhibition of NO production of 46.09% at a concentration of 10.0μM. Compounds 7, 10, 11, and 16 inhibited TNF-α secretion at all concentration tested (0.4, 2.0, and 10.0μM), with inhibition values ranging from 22.27% to 33.13%. In addition, compound 8 and 9 decrease COX-2 and iNOS protein on Western blot analysis in dose dependent manner. Topics: Anti-Inflammatory Agents; Cells, Cultured; Chrysanthemum; Cyclooxygenase 2; Flavonoids; Flowers; Inflammation; Lipopolysaccharides; Macrophages; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Structure; Nitric Oxide; Nitric Oxide Synthase Type II; Phytotherapy; Plant Extracts; Spectrometry, Mass, Electrospray Ionization; Structure-Activity Relationship; Tumor Necrosis Factor-alpha | 2015 |
Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice.
The flavone 4',5,7-trihydroxy-3',5'-dimethoxyflavone (tricin) present in rice, oats, barley, and wheat exhibits antigrowth activity in several human cancer cell lines and anti-inflammatory potential. However, the chemopreventive activity has not yet been elucidated in preclinical animal models of colorectal cancer. This study was designed to determine whether dietary tricin exerts inflammation-associated colon carcinogenesis induced by azoxymethane and dextran sulfate sodium in mice. Male Crj: CD-1 mice were initiated with a single i.p. injection of azoxymethane (10 mg/kg body weight) and followed by a 1-week exposure to dextran sulfate sodium (1.5%, w/v) in drinking water to induce colonic neoplasms. They were then given the experimental diet containing 50 or 250 ppm tricin. The experiment was terminated at week 18 to determine the chemopreventive efficacy of tricin. In addition, the effects of dietary tricin on the expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, were assayed. The development of colonic adenomas and adenocarcinomas was significantly reduced by feeding with 50 and 250 ppm tricin, respectively. Dietary tricin also significantly reduced the proliferation of adenocarcinoma cells as well as the numbers of mitoses/anaphase bridging in adenocarcinoma cells. The dietary administration with tricin significantly inhibited the expression of TNF-alpha in the nonlesional cypts. Our findings that dietary tricin inhibits inflammation-related mouse colon carcinogenesis by suppressing the expression of TNF-alpha in the nonlesional cyrpts and the proliferation of adenocarcinomas suggest a potential use of tricin for clinical trials of colorectal cancer chemoprevention. Topics: Adenocarcinoma; Adenoma; Animals; Azoxymethane; Blotting, Western; Carcinogens; Colonic Neoplasms; Diet; Flavonoids; Inflammation; Male; Mice; Mice, Inbred ICR; Phytotherapy; Plant Extracts; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2009 |