trichostatin-a and Visceral-Pain

trichostatin-a has been researched along with Visceral-Pain* in 2 studies

Other Studies

2 other study(ies) available for trichostatin-a and Visceral-Pain

ArticleYear
Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor.
    Neurogastroenterology and motility, 2018, Volume: 30, Issue:4

    Altered visceral sensation is common in irritable bowel syndrome (IBS) and nerve growth factor (NGF) participates in visceral pain development. Sodium butyrate (NaB) could induce colonic hypersensitivity via peripheral up-regulation of NGF in animals. Enteric glial cells (EGCs) appear to be an important source of NGF. Whether butyrate could induce visceral hypersensitivity via increased EGC-derived NGF is still unknown.. CRL-2690 cells were used for transcriptome analyses after butyrate treatment. Rats received butyrate enemas to induce colonic hypersensitivity. Colorectal distention test was performed to assess visceral sensitivity. Immunofluorescence studies were used to evaluate the co-expression of glial fibrillary acidic protein (GFAP) and NGF or growth associated protein 43 in animal model. NGF expression in rat colon was also investigated. In vitro, CRL-2690 cells were stimulated with NaB or trichostatin A (TSA). NGF or GFAP expression was also examined.. Transcriptome analyses showed that butyrate induced marked changes of genes expression related to neurotrophic signaling pathways. NaB-treated rats showed increased visceral sensitivity. An improved NGF expression level was observed in NaB-treated rats. Meanwhile, a 2.1-fold increase in co-expression of GFAP and NGF was also determined in rats received NaB enemas. In cultured cells, both NaB and TSA treatment could cause obvious NGF expression. Thus, butyrate might regulate EGC function via histone deacetylase inhibition.. Butyrate-EGC interplay may play a pivotal role in regulation of NGF expression and the development of colonic hypersensitivity in IBS-like animal model.

    Topics: Animals; Butyric Acid; Cell Line; Disease Models, Animal; Enteric Nervous System; Gene Expression Profiling; Histone Deacetylase Inhibitors; Hydroxamic Acids; Irritable Bowel Syndrome; Male; Nerve Growth Factor; Neuroglia; Rats, Sprague-Dawley; Transcriptome; Visceral Pain

2018
Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress.
    Psychoneuroendocrinology, 2013, Volume: 38, Issue:6

    Epigenetic molecular mechanisms, which include DNA methylation and histone deacetylation, are implicated in the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Previously, we demonstrated that repeated water avoidance stress (WAS), a validated model of chronic psychological stress, induces heightened visceral pain behaviors in rodents that resemble irritable bowel syndrome (IBS) sequelae. However, the involvement of epigenetic molecular mechanisms in the pathophysiology of stress-induced visceral pain has not been explored. Our hypothesis is that epigenetic mechanisms within the central nervous system (CNS) are important to chronic stress-induced visceral hypersensitivity. Adult male F-344 rats with intracerebroventricular (i.c.v.) cannulae were exposed to 7 days of repeated WAS. Controls received a SHAM stress. Following the daily 1h stressor, trichostatin A (TSA; 100 ng/ml), a potent histone deacetylase inhibitor, or vehicle (VEH; 0.1% DMSO/saline,) as control was administered via the i.c.v. cannula. Visceral sensitivity was assessed 24h after the final WAS and quantified the visceromotor response (VMR) by recording the number of abdominal contractions in response to graded pressures (20-60 mmHg) of colorectal distensions (CRD). From a separate group of rats that were exposed to repeated WAS or SHAM stress, the amygdala was isolated to assess the methylation status of glucocorticoid receptor (GR) and corticotropin releasing-factor (CRF) genes via bisulfite sequencing and verified by pyrosequencing. GR and CRF gene expression was quantified via qRT-PCR. Stressed rats exhibited visceral hypersensitivity that was significantly attenuated by TSA. Compared to SHAM controls, methylation of the GR gene was increased following WAS while expression of the GR gene was decreased. Methylation of the CRF promoter was decreased with WAS with a concomitant increase in CRF expression. This study demonstrates the involvement of central epigenetic mechanisms in regulating stress-induced visceral hypersensitivity and provides a foundation for exploring the epigenetic mechanisms that may contribute to IBS-like symptomatology.

    Topics: Amygdala; Animals; Corticotropin-Releasing Hormone; DNA Methylation; Epigenesis, Genetic; Gene Expression; Histone Deacetylase Inhibitors; Hydroxamic Acids; Infusions, Intraventricular; Male; Pain Measurement; Rats; Receptors, Glucocorticoid; Stress, Psychological; Visceral Pain

2013