trichostatin-a and Glomerulosclerosis--Focal-Segmental

trichostatin-a has been researched along with Glomerulosclerosis--Focal-Segmental* in 2 studies

Other Studies

2 other study(ies) available for trichostatin-a and Glomerulosclerosis--Focal-Segmental

ArticleYear
Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis.
    Toxicology and applied pharmacology, 2013, Sep-01, Volume: 271, Issue:2

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors.

    Topics: Acetylation; Animals; Doxorubicin; Female; Fibrosis; Glomerulosclerosis, Focal Segmental; Histone Deacetylase Inhibitors; Hydroxamic Acids; Immunohistochemistry; Inflammation; Kidney; Kidney Diseases; Mice; Mice, Inbred BALB C; Microscopy, Electron, Transmission; Neutrophil Infiltration; RNA, Messenger; Valproic Acid

2013
Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury.
    Stem cells (Dayton, Ohio), 2007, Volume: 25, Issue:10

    Bone morphogenic protein (BMP)-7 is expressed in the adult kidney and reverses chronic renal injury when given exogenously. Here, we report that a histone deacetylase inhibitor, trichostatin A (TSA), attenuates chronic renal injury, in part, by augmenting the expression of BMP-7 in kidney side population (SP) cells. We induced accelerated nephrotoxic serum nephritis (NTN) in C57BL/6 mice and treated them with TSA for 3 weeks. Compared with vehicle-treated NTN mice, treatment with TSA prevented the progression of proteinuria, glomerulosclerosis, interstitial fibrosis, and loss of kidney SP cells. Basal gene expression of renoprotective factors such as BMP-7, vascular endothelial growth factor, and hepatocyte growth factor was significantly higher in kidney SP cells as compared with non-SP cells. Treatment with TSA significantly upregulated the expression of BMP-7 in SP cells but not in non-SP cells. Moreover, initiation of treatment with TSA after 3 weeks of NTN (for 3 weeks, until 6 weeks) partially but significantly reversed renal dysfunction. Our results indicate an important role of SP cells in the kidney as one of the possible generator cells of BMP-7 and TSA as a stimulator of the cells in reversing chronic renal disease. Disclosure of potential conflicts of interest is found at the end of this article.

    Topics: Acetylation; Animals; Basic Helix-Loop-Helix Transcription Factors; Disease Progression; Gene Expression Regulation; Glomerulonephritis; Glomerulosclerosis, Focal Segmental; Hematopoietic Stem Cells; Histone Deacetylase Inhibitors; Histones; Hydroxamic Acids; Kidney; Mice; Mice, Inbred C57BL; Multipotent Stem Cells; Nephritis, Interstitial; Protein Processing, Post-Translational; Sheep; Specific Pathogen-Free Organisms; Transcription Factors

2007