trichostatin-a has been researched along with Chromosomal-Instability* in 3 studies
3 other study(ies) available for trichostatin-a and Chromosomal-Instability
Article | Year |
---|---|
Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. Topics: Cell Line, Tumor; Chromosomal Instability; Gene Expression Regulation, Neoplastic; Histone Deacetylase 2; Histone Deacetylases; Humans; Hydroxamic Acids; Mutation; Phosphoric Diester Hydrolases; Rhabdomyosarcoma; RNA, Small Interfering; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; TATA-Binding Protein Associated Factors; Valproic Acid | 2016 |
Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia.
At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post-treatment is favouring the slow component of DSB repair pathway, the one impaired in absence of a functionally ATM protein. Data obtained suggest a fundamental role of chromatin compaction on chromosomal instability in A-T cells. Topics: Ataxia Telangiectasia; Ataxia Telangiectasia Mutated Proteins; Cell Cycle; Cell Line; Chromatin; Chromosomal Instability; Comet Assay; DNA Damage; DNA Repair; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Radiation Tolerance; Radiation, Ionizing | 2015 |
Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer.
Regional DNA hypermethylation and global DNA hypomethylation are 2 epigenetic alterations associated with colorectal cancers. However, their correlation with microsatellite instability (MSI) and chromosomal instability (CIN) in colorectal cancer, and their relationship with chromatin conformation and histone modification are not clear. In this study, we analyzed regional and global methylation in 16 cell lines and 64 primary colorectal cancers. We found that MSI and CIN are 2 alternative events in most cell lines and tumors. Furthermore, regional hypermethylation and global hypomethylation are also alternative events in most cases. We also observed a strong correlation between MSI and regional hypermethylation and between CIN and global hypomethylation. We further analyzed chromatin conformation and histone acetylation in cell lines with CIN or MSI. CIN cancers had open chromatin conformation and enriched histone acetylation in repetitive as well as in gene-specific regions. MSI cancers, on the other hand, had closed chromatin conformation and low levels of histone acetylation. After a MSI cell line was treated with 5-aza-2'-deoxycytidine or trichostatin A, the closed chromatin conformation became open, and histone acetylation was enriched. These observations support our hypothesis that in colorectal cancer, regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation, which might have a causal correlation with MSI and CIN, respectively. Topics: Acetylation; Antimetabolites, Antineoplastic; Azacitidine; Cell Line, Tumor; Chromatin; Chromosomal Instability; Colorectal Neoplasms; DNA Methylation; DNA, Neoplasm; Epigenesis, Genetic; Histones; Humans; Hydroxamic Acids; Immunoprecipitation; Loss of Heterozygosity; Microsatellite Repeats; Protein Conformation | 2006 |