trichostatin-a has been researched along with Brain-Ischemia* in 4 studies
4 other study(ies) available for trichostatin-a and Brain-Ischemia
Article | Year |
---|---|
Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats.
Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway.. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg).. TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically.. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein. Topics: Analysis of Variance; Androstadienes; Animals; Brain Injuries; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hydroxamic Acids; Male; Nervous System Diseases; Neuroprotective Agents; Oncogene Protein v-akt; Phosphatidylinositol 3-Kinases; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Wortmannin | 2015 |
Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage.
Interest in histone deacetylase (HDAC)-based therapeutics as a potential treatment for stroke has grown dramatically. The neuroprotection of HDAC inhibition may involve multiple mechanisms, including modulation of transcription factor acetylation independent of histones. The transcription factor Nrf2 has been shown to be protective in stroke as a key regulator of antioxidant-responsive genes. Here, we hypothesized that HDAC inhibition might provide neuroprotection against mouse cerebral ischemia by activating the Nrf2 pathway. We determined that the classic HDAC inhibitor trichostatin A increased neuronal cell viability after oxygen-glucose deprivation (from an OD value of 0.10±0.01 to 0.25±0.08) and reduced infarct volume in wild-type mice with stroke (from 49.1±3.8 to 21.3±4.6%). In vitro studies showed that HDAC inhibition reduced Nrf2 suppressor Keap1 expression, induced Keap1/Nrf2 dissociation, Nrf2 nuclear translocation, and Nrf2 binding to antioxidant response elements in heme oxygenase 1 (HO1), and caused HO1 transcription. Furthermore, we demonstrated that HDAC inhibition upregulated proteins downstream of Nrf2, including HO1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit in neuron cultures and brain tissue. Finally, unlike wild-type mice, Nrf2-deficient mice were not protected by pharmacologic inhibition of HDAC after cerebral ischemia. Our studies suggest that activation of Nrf2 might be an important mechanism by which HDAC inhibition provides neuroprotection. Topics: Adaptor Proteins, Signal Transducing; Animals; Brain Ischemia; Cell Hypoxia; Cell Survival; Cells, Cultured; Cytoskeletal Proteins; Female; Gene Expression; Gene Expression Regulation; Genes, Reporter; Histone Deacetylase Inhibitors; Hydroxamic Acids; Kelch-Like ECH-Associated Protein 1; Luciferases; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Neuroprotective Agents; NF-E2-Related Factor 2; Protein Binding; Response Elements | 2012 |
Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury.
Acetylation/deactylation of histones is an important mechanism to regulate gene expression and chromatin remodeling. We have previously demonstrated that the HDAC inhibitor trichostatin A (TSA) protects cortical neurons from oxygen/glucose deprivation in vitro which is mediated--at least in part--via the up regulation of gelsolin expression. Here, we demonstrate that TSA treatment dose-dependently enhances histone acetylation in brains of wildtype mice as evidenced by immunoblots of total brain lysates and immunocytochemical staining. Along with increased histone acetylation dose-dependent up regulation of gelsolin protein was observed. Levels of filamentous actin were largely decreased by TSA pre-treatment in brain of wildtype but not gelsolin-deficient mice. When exposed to 1 h filamentous occlusion of the middle cerebral artery followed by reperfusion TSA pre-treated wildtype mice developed significantly smaller cerebral lesion volumes and tended to have improved neurological deficit scores compared to vehicle-treated mice. These protective effects could not be explained by apparent changes in physiological parameters. In contrast to wildtype mice, TSA pre-treatment did not protect gelsolin-deficient mice against MCAo/reperfusion suggesting that enhanced gelsolin expression is an important mechanism by which TSA protects against ischemic brain injury. Our results suggest that HDAC inhibitors such as TSA are a promising therapeutic strategy for reducing brain injury following cerebral ischemia. Topics: Acetylation; Animals; Brain Injuries; Brain Ischemia; Calcium; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Embryo, Mammalian; Enzyme Inhibitors; Gelsolin; Glucose; Histones; Hydroxamic Acids; Hypoxia; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mice, Knockout; Phosphopyruvate Hydratase; Rats | 2008 |
Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action.
The pathophysiology of cerebral ischemia involves multiple mechanisms including neuroinflammation mediated by activated microglia and infiltrating macrophages/monocytes. The present study employed a rat permanent middle cerebral artery occlusion (pMCAO) model to study effects of histone deacetylase (HDAC) inhibition on ischemia-induced brain infarction, neuroinflammation, gene expression, and neurological deficits. We found that post-pMCAO injections with HDAC inhibitors, valproic acid (VPA), sodium butyrate (SB), or trichostatin A (TSA), decreased brain infarct volume. Postinsult treatment with VPA or SB also suppressed microglial activation, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. The reduction in levels of acetylated histone H3 in the ischemic brain was prevented by treatment with VPA, SB, or TSA. Moreover, injections with HDAC inhibitors superinduced heat-shock protein 70 and blocked pMCAO-induced down-regulation of phospho-Akt, as well as ischemia-elicited up-regulation of p53, inducible nitric oxide synthase, and cyclooxygenase-2. The motor, sensory, and reflex performance of pMCAO rats was improved by VPA, SB, or TSA treatment. The beneficial effects of SB and VPA in reducing brain infarct volume and neurological deficits occurred when either drug was administrated at least 3 h after ischemic onset, and the behavioral improvement was long-lasting. Together, our results demonstrate robust neuroprotective effects of HDAC inhibitors against cerebral ischemia-induced brain injury. The neuroprotection probably involves multiple mechanisms including suppression of ischemia-induced cerebral inflammation. Given that there is no effective treatment for stroke, HDAC inhibitors, such as VPA, SB, and TSA, should be evaluated for their potential use for clinical trials in stroke patients. Topics: Animals; Anti-Inflammatory Agents; Brain; Brain Ischemia; Butyrates; CD11b Antigen; Cerebral Infarction; Disease Models, Animal; Ectodysplasins; Enzyme Inhibitors; Histone Deacetylase Inhibitors; Histones; HSP70 Heat-Shock Proteins; Hydroxamic Acids; Male; Microglia; Neuroprotective Agents; Nitric Oxide Synthase Type II; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Stroke; Tumor Suppressor Protein p53; Valproic Acid | 2007 |