tricetin has been researched along with Neoplasms* in 2 studies
2 review(s) available for tricetin and Neoplasms
Article | Year |
---|---|
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.
Protein kinases have been important targets for antitumor targets due to their key roles in regulating multiple cell signaling pathways. Numerous compounds containing flavonoid scaffold as an indispensable anchor have been found to be potent inhibitors of protein kinases. Some of these flavonoids have been in clinical research as protein kinases inhibitors. Thus, the present review mainly focuses on the structural requirement for anticancer potential of flavone derivatives targeting several key serine/threonine protein kinases. This information may provide an opportunity to scientists of medicinal chemistry to design multi-functional flavone derivatives for the treatment of cancer. Topics: Animals; Antineoplastic Agents; Flavones; Humans; Neoplasms; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases | 2019 |
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction | 2015 |