tricetin has been researched along with Bone-Neoplasms* in 2 studies
2 other study(ies) available for tricetin and Bone-Neoplasms
Article | Year |
---|---|
Tricetin inhibits human osteosarcoma cells metastasis by transcriptionally repressing MMP-9 via p38 and Akt pathways.
Tricetin, a dietary flavonoid, has cytostatic properties and anti-metastasis activities in various cancer cells. However, the detailed impacts and underlying mechanisms of tricetin on human osteosarcoma cell metastasis are still unclear. Here, the hypothesis that tricetin possesses the anti-metastatic effects on human osteosarcoma cells was tested. The effects of tricetin on cell viability, motility, migration, and invasion in human osteosarcoma U2OS and HOS cells were investigated. Gelatin zymography, western blotting, polymerase chain reaction (PCR), and the luciferase assay were used to further explore the underlying mechanisms involved in anti-metastatic effects in U2OS cells. Their results showed that Tricetin, up to 80 μM without cytotoxicity, attenuated U2OS and HOS cells motility, invasiveness, and migration by reducing matrix metalloproteinase (MMP)-9 enzyme activities. In U2OS cells, tricetin decreased MMP-9 protein and mRNA expressions, which was confirmed by real-time PCR. Next, tricetin reduced phosphorylation of p38 and Akt, but no effect on phosphorylation of ERK1/2 and JNK. In conclusion, tricetin possesses the anti-metastatic activity of osteosarcoma cells by transcriptionally repressing MMP-9 via p38 and Akt signaling pathways. This may be potentially useful as anti-metastatic agents for osteosarcoma chemotherapy. Topics: Antineoplastic Agents; Bone Neoplasms; Cell Line, Tumor; Cell Movement; Cell Survival; Chromones; Humans; Matrix Metalloproteinase 9; Neoplasm Invasiveness; Osteosarcoma; Phosphorylation; Signal Transduction | 2017 |
Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene‑induced human non‑small cell lung cancer bone metastasis.
This is the first study to demonstrate that benzo(a)-pyrene (BaP) was able to enhance the production of parathyroid hormone‑related protein (PTHrP) by human non‑small cell lung cancer H460 cells. Such effect would further contribute to bone metastasis of lung cancer by increasing osteoclastogenesis. This study is also the first to reveal that tricetin (TCN), a flavonoid derivative found in Myrtaceae pollen and Eucalyptus honey, was able to reverse BaP‑mediated bone resorption activity of lung cancer cells. Human non‑small cell lung cancer H460 cells were treated with BaP to generate conditioned medium. When osteoblasts were cultured with BaP‑H460‑CM, their expression of osteoclastogenesis activator macrophage colony‑stimulating factor (M‑CSF) and receptor activator of nuclear factor κB ligand (RANKL) was increased. BaP‑H460‑CM reduced the production of osteoprotegerin (OPG), an osteoclastogenesis inhibitor, in osteoblasts. Osteoclastogenesis and bone resorption activity of H460 cells were increased by BaP‑H460‑CM. With BaP‑mediated PTHrP upregulation, IL‑8 secretion in H460 cells was increased contributing to human non‑small cell lung cancer‑mediated osteoclast differentiation and bone resorption. Moreover, TCN suppressed BaP‑mediated bone resorption. Therefore, TCN may be a novel agent for treatment of non‑small cell lung cancer patients with bone metastasis. Topics: Antineoplastic Agents; Benzo(a)pyrene; Bone Neoplasms; Bone Resorption; Carcinoma, Non-Small-Cell Lung; Cells, Cultured; Chromones; Enzyme-Linked Immunosorbent Assay; Flavonoids; Humans; Interleukin-8; Lung Neoplasms; Macrophage Colony-Stimulating Factor; Osteoblasts; Osteoprotegerin; Parathyroid Hormone-Related Protein; RANK Ligand; Real-Time Polymerase Chain Reaction | 2015 |