tricalcium phosphate has been researched along with ACL Injuries in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (12.50) | 29.6817 |
2010's | 12 (75.00) | 24.3611 |
2020's | 2 (12.50) | 2.80 |
Authors | Studies |
---|---|
Blanchemain, N; Hildebrand, F; Martel, B; Saab, M | 1 |
Ikeda, K; Kinugasa, T; Mutsuzaki, H; Sakane, M | 1 |
Grützner, PA; Guehring, T; Schnetzke, M; Schwaab, J; von Recum, J | 1 |
Fujie, H; Hattori, S; Kobayashi, H; Mutsuzaki, H; Ochiai, N; Sakane, M | 1 |
Hioki, S; Ikeda, K; Kanamori, A; Kinugasa, T; Mutsuzaki, H; Sakane, M | 1 |
Chih, TT; Ju, CP; Lin, JH; Lin, SD; Tien, YC | 1 |
Bian, W; Li, X; Li, Z; Mao, G; Qin, Z; Qiu, Y | 1 |
Bian, W; He, J; Li, D; Li, X; Li, Z; Snedeker, JG | 1 |
Bian, W; He, J; Li, D; Li, X; Li, Z; Snedeker, JG; Zhang, W | 1 |
Huangfu, X; Zhao, J | 1 |
Bian, W; He, J; Jin, Z; Li, D; Li, X; Liu, Y; Zhang, W | 1 |
Dejour, D; Demey, G; Ntagiopoulos, PG; Tavernier, T | 1 |
Barber, FA; Dockery, WD | 1 |
Hatayama, K; Higuchi, H; Ikeda, K; Kato, K; Kobayashi, A; Yanagisawa, S | 1 |
Di Matteo, B; Kon, E | 1 |
Cao, H; Jiang, Y; Qiao, G; Shen, H | 1 |
1 review(s) available for tricalcium phosphate and ACL Injuries
Article | Year |
---|---|
Osteoinductive Bone Morphogenic Protein, Collagen Scaffold, Calcium Phosphate Cement, and Magnesium-Based Fixation Enhance Anterior Cruciate Ligament Tendon Graft to Bone Healing In Animal Models: A Systematic Review.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Bone Morphogenetic Proteins; Bone Substitutes; Calcium Phosphates; Collagen; Dogs; Magnesium; Rabbits; Sheep; Tendons; Wound Healing | 2023 |
3 trial(s) available for tricalcium phosphate and ACL Injuries
Article | Year |
---|---|
Anatomic single-bundle anterior cruciate ligament reconstruction using a calcium phosphate-hybridized tendon graft: a randomized controlled trial with 2 years of follow-up.
Topics: Adolescent; Adult; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Arthroscopy; Calcium Phosphates; Child; Female; Femur; Follow-Up Studies; Hamstring Tendons; Humans; Male; Recurrence; Treatment Outcome; Young Adult | 2018 |
Bone Incorporation of Silicate-Substituted Calcium Phosphate in 2-Stage Revision Anterior Cruciate Ligament Reconstruction: A Histologic and Radiographic Study.
Topics: Adult; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Biopsy; Bone Marrow; Bone Substitutes; Bone Transplantation; Calcium Phosphates; Female; Humans; Male; Middle Aged; Postoperative Period; Prospective Studies; Reoperation; Silicates; Tendons; Tibia; Tomography, X-Ray Computed | 2017 |
Effect of calcium phosphate-hybridized tendon graft in anterior cruciate ligament reconstruction: a randomized controlled trial.
Topics: Adolescent; Adult; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Arthroscopy; Calcium Phosphates; Female; Humans; Male; Tendons; Young Adult | 2012 |
12 other study(ies) available for tricalcium phosphate and ACL Injuries
Article | Year |
---|---|
Effect of calcium phosphate–hybridized tendon graft on biomechanical behavior in anterior cruciate ligament reconstruction in a goat model: novel technique for improving tendon-bone healing.
Topics: Animals; Anterior Cruciate Ligament Injuries; Biomechanical Phenomena; Calcium Phosphates; Female; Goats; Knee Injuries; Knee Joint; Models, Animal; Tendons; Tomography, X-Ray Computed; Wound Healing | 2011 |
Augmentation of tendon-bone healing by the use of calcium-phosphate cement.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Bone Cements; Calcium Phosphates; Femur; Graft Survival; Male; Rabbits; Tendons; Tensile Strength; Wound Healing | 2004 |
A tricalcium phosphate/polyether ether ketone anchor bionic fixation device for anterior cruciate ligament reconstruction: Safety and efficacy in a beagle model.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Bionics; Calcium Phosphates; Dogs; Internal Fixators; Male; Materials Testing | 2019 |
A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction: an off-the shelf alternative to a bone-tendon-bone autograft.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Autografts; Benzophenones; Biocompatible Materials; Bombyx; Bone and Bones; Calcium Phosphates; Humans; Ketones; Male; Polyethylene Glycols; Polymers; Silk; Swine; Tendons; Tissue Scaffolds | 2014 |
A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction - safety and efficacy in a porcine model.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Benzophenones; Bioprosthesis; Calcium Phosphates; Equipment Failure Analysis; Guided Tissue Regeneration; Humans; Ketones; Materials Testing; Polyethylene Glycols; Polymers; Prosthesis Design; Silk; Swine; Tissue Scaffolds; Treatment Outcome | 2014 |
Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Arthroscopy; Biocompatible Materials; Biomechanical Phenomena; Calcium Phosphates; Chondrogenesis; Disease Models, Animal; Dogs; Knee Injuries; Male; Osteogenesis; Treatment Outcome | 2007 |
[Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Biocompatible Materials; Biomechanical Phenomena; Calcium Phosphates; Computer-Aided Design; Knee Joint; Male; Osteogenesis; Printing; Prostheses and Implants; Silk; Swine; Tensile Strength; Tissue Engineering; Tissue Scaffolds | 2014 |
Comparison of resorption and remodeling of bioabsorbable interference screws in anterior cruciate ligament reconstruction.
Topics: Absorbable Implants; Adult; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Bone Remodeling; Bone Screws; Calcium Phosphates; Female; Humans; Knee Injuries; Lactic Acid; Male; Middle Aged; Polyesters; Polymers; Retrospective Studies; Transplantation, Autologous; Young Adult | 2015 |
Long-Term Degradation of Self-Reinforced Poly-Levo (96%)/Dextro (4%)-Lactide/β-Tricalcium Phosphate Biocomposite Interference Screws.
Topics: Adolescent; Adult; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Biodegradable Plastics; Bone Screws; Calcium Phosphates; Child; Female; Femur; Follow-Up Studies; Humans; Knee Injuries; Male; Materials Testing; Middle Aged; Polyesters; Tibia; Time Factors; Tomography, X-Ray Computed; Young Adult | 2016 |
Efficacy of β-Tricalcium Phosphate Graft into the Bone Defects after Bone-Patellar Tendon-Bone Anterior Cruciate Ligament Reconstruction.
Topics: Adolescent; Adult; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Biocompatible Materials; Bone Regeneration; Bone-Patellar Tendon-Bone Grafting; Calcium Phosphates; Female; Humans; Knee Joint; Male; Patella; Pilot Projects; Prospective Studies; Tibia; Transplant Donor Site; Transplantation, Autologous; Wound Healing; Wounds and Injuries; Young Adult | 2017 |
Editorial Commentary: Bone Tunnel Grafting for Two-Stage Anterior Cruciate Ligament Revision and the Meaning of Life for an Arthroscopic Surgeon.
Topics: Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Anterior Cruciate Ligament Reconstruction; Autografts; Calcium Phosphates; Follow-Up Studies; Humans; Prospective Studies; Reoperation; Silicates; Surgeons | 2020 |
An histological study of the influence of osteoinductive calcium phosphate ceramics on tendon healing pattern in a bone tunnel with suspensory fixation.
Topics: Animals; Anterior Cruciate Ligament; Anterior Cruciate Ligament Injuries; Bone Substitutes; Calcium Phosphates; Femur; Osteogenesis; Osteotomy; Rabbits; Tendons; Tibia; Wound Healing | 2010 |