tribulus has been researched along with Inflammation* in 7 studies
2 trial(s) available for tribulus and Inflammation
Article | Year |
---|---|
The effect of Tribulus terrestris supplementation on inflammation, oxidative stress, and performance of recreational runners: study protocol for a randomized placebo-controlled trial.
High intensity and endurance exercises lead to exercise-induced oxidative stress (EIOS), exercise-induced muscle damage (EIMD), and inflammation, which are the influencing factors on muscle soreness, localized swelling, and sports performance decrease. Therefore, the purpose of this study is to determine the effectiveness of Tribulus terrestris (TT) as an herbal supplement with antioxidant and anti-inflammatory properties on the nutritional, oxidative, inflammatory, and anti-inflammatory status, as well as the sports performance of recreational runners.. This study is a double-blind, randomized, placebo-controlled trial, which will be conducted among recreational runners of Tabriz stadiums, Iran. Thirty-four recreational runners will be selected, and participants will be assigned randomly to two groups: to receive 500 mg TT supplement or placebo capsules twice daily for 2 weeks. Both groups will do high-intensity interval training (HIIT) workouts during the study. Baseline and post-intervention body composition, muscle pain, and aerobic and anaerobic performance will be assessed. In addition, assessment of malondialdehyde (MDA), total antioxidant capacity (TAC), total oxidant status (TOS), superoxide dismutase (SOD), glutathione peroxidase (GPx), uric acid (UA), 8-iso-prostaglandin F2α (8-iso-PGF2α), protein carbonyl (PC), catalase (CAT), glutathione (GSH), nitric oxide (NO), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), creatine kinase (CK), myoglobin (MYO), lactate dehydrogenase (LDH), insulin-like growth factor-1 (IGF-1) irisin, cortisol, and brain-derived neurotrophic factor (BDNF) will be done during three blood samplings. Changes in oxidative stress, anti/inflammatory biomarkers, and sports performance will be assessed as primary outcomes.. This study will be the first to assess the potential effects of TT on recreational runners. Our results will contribute to the growing body of knowledge regarding TT supplementation on the nutritional, oxidative, inflammatory, and anti-inflammatory status and sports performance in recreational runners.. Iranian Registry of Clinical Trials ( www.irct.ir ) (ID: IRCT20150205020965N8 ). Registration date: 13 February 2021. Topics: Anti-Inflammatory Agents; Antioxidants; Biomarkers; Dietary Supplements; Double-Blind Method; Humans; Inflammation; Iran; Myalgia; Oxidative Stress; Randomized Controlled Trials as Topic; Running; Tribulus | 2022 |
6-Week Supplementation with
Tribulus terrestris L. (TT) ingredients have anti-inflammatory and antioxidant activities, but their effects on exercise-induced muscle damage (EIMD) in trained athletes are uncertain. The purpose of this single-blind placebo-controlled trial, in accordance with CONSORT guidelines, was to examine the effect of 6 weeks of TT supplementation on muscle metabolism, inflammation biomarkers, and oxidant status. Thirty trained male CrossFit® athletes were randomly assigned to be supplemented with 770 mg/day of TT (intervention group (IG)) or receive a placebo daily (control group (CG)) for 6 weeks. Muscle damage enzymes, inflammation biomarkers, and Total Antioxidant Status (TAS) were assessed at baseline (T1), 21 days after baseline (T2), and after 42 days (T3). Grace, a Workout of the Day, was measured in T1 and T3. Statistical significance (p < 0.05) was found between IG and CG in Lactate Dehydrogenase (LDH), C-reactive protein (CRP), and TAS levels at the end of the follow-up. Furthermore, TAS levels were significantly (p < 0.05) lower at T2 and T3 relative to baseline in the IG, also LDH and CRP increased significantly (p < 0.05) at T2 and T3 relative to baseline in the CG. No significant (p > 0.05) decreases in muscle damage or inflammation biomarkers were observed, although a slight downward trend was observed after 6 weeks for supplemented athletes. TT supplementation could attenuate the CrossFit® training program-induced oxidative stress, muscle damage, and inflammation which could be due to the natural antioxidant and anti-inflammatory properties of TT. Topics: Anti-Inflammatory Agents; Antioxidants; Athletes; Biomarkers; Dietary Supplements; Humans; Inflammation; L-Lactate Dehydrogenase; Male; Muscles; Oxidative Stress; Plant Preparations; Single-Blind Method; Tribulus | 2022 |
5 other study(ies) available for tribulus and Inflammation
Article | Year |
---|---|
Study of the anti-inflammatory properties of a thick extract of Tribulus terrestris L.
The most promising direction in the treatment of chronic prostatitis is the use of medicinal plants and preparations based on them, which contain natural compounds with a broad spectrum of pharmacological activity: anti-inflammatory, antimicrobial, reparative, immunomodulatory, hormone-regulating, antisclerotic, etc., and which can provide a complex therapeutic effect on the course of chronic prostatitis. A promising raw material in this direction is Tribulus terrestris L., a herbal preparation traditionally used to treat erectile dysfunction and atherosclerosis. This experimental work aims to study the anti-inflammatory activity of a thick extract of the Tribulus terrestris grass (freed from fruits) on the models of carrageenan and zymosan inflammation in rats. In the models of carrageenan and zymosan edema in rats, a thick extract of Tribulus terrestris L. in doses from 50 mg/kg to 200 mg/kg shows anti-inflammatory activity, the efficacy of which in the dose range of 150-200 mg/g in the initial stages of carrageenan inflammation is not inferior to sodium diclofenac at a dose of 8.0 mg/kg, and in the initial stages of zymosan inflammation, respectively, before the reference drug corvitin at a dose of 10 mg/kg. It indicates the anticyclogenase and antilipoxygenase properties of this thick extract. Topics: Animals; Anti-Inflammatory Agents; Carrageenan; Humans; Inflammation; Male; Plant Extracts; Prostatitis; Rats; Tribulus; Zymosan | 2023 |
Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies.
The present study has been aimed to explore the different secondary messengers of the inflammatory pathway NF-κB, kinases (JNK, P38MAPK, GSK3β/βcatenin), apoptosis pathway (Caspase-3 and AIF), and neuronal survival pathway (BDNF) in order to understand the neuroprotective mechanism of aqueous extract of Tribulus terrestris (AQTT). In primary cortical neurons, the ischemic condition was induced through oxygen-glucose deprivation (OGD). Anti-inflammatory activity of AQTT was evaluated in formalin induced inflammation model and carrageenan-induced paw edema test. The bilateral common carotid artery occlusion model was employed for whole animal studies. Treatment of AQTT (100 mg/kg) significantly reduced the inflammation induced by formalin and carrageenan. The neuroprotective mechanism of AQTT (50 and 100 mg/kg) was assessed by pre- and post-administration. The results indicate down regulation of kinases and NFkB, suggesting possible anti-inflammatory activity of AQTT. Additionally, AQTT down regulated both caspase dependent and independent apoptotic pathways suggesting its possible anti-apoptotic activity. The treatment of AQTT also reduced GSK3β levels and increased p-Ser9 GSK3β levels; stabilizing the unphosphorylated form of β-catenin and its translocation into the nucleus suggesting role of AQTT in neuronal survival and GSK3β mediated anti-inflammatory property. In comparison to pretreatment, post treatment of AQTT had lesser effects indicating tribulusterine standardized AQTT may have prophylactic effect. This study can be concluded with the thesis that AQTT has neuroprotective effect through alternating neuroinflammation, apoptosis, and promoting neuron survival. Being that it produced better effect with pretreatment, exploring this with thrombolytic drugs will be beneficial. For the first time AQTT has been reported for this indication. Topics: Animals; Apoptosis; Cell Survival; Down-Regulation; Glucose; Inflammation; Male; Mice, Inbred C57BL; Neurons; Neuroprotection; Neuroprotective Agents; Signal Transduction; Tribulus | 2019 |
Effects of Tribulus terrestris on monosodium iodoacetate‑induced osteoarthritis pain in rats.
Tribulus terrestris L. (T. terrestris) has been used as a traditional medicine for the treatment of diuretic, lithontriptic, edema and urinary infections. Previous studies have indicated that it is effective in improving inflammation by regulating tumor necrosis factor‑α (TNF)‑α, interleukin (IL)‑6, IL‑10, nitric oxide (NO) and cyclooxygenase (COX)‑2. However, the effects and mechanism of action of T. terrestris on osteoarthritis (OA) remain unknown. Therefore, the present study aimed to evaluate the effects of the ethanolic extract of T. terrestris (ETT) in a monosodium iodoacetate (MIA)‑induced OA animal model. OA was induced in LEW/SSNHSD rats by intra‑articular injection of MIA. Morphometric changes and parameters of the tibial trabecular bone were determined using micro‑computed tomography. The molecular mechanisms of ETT in OA were investigated using reverse transcription‑polymerase chain reaction, western blotting and gelatin zymogram analysis. Treatment with ETT attenuated MIA‑induced OA, and this effect was mediated by the downregulation of NO synthase 2, COX‑2, TNF‑α and IL‑6. Furthermore, the ETT‑mediated attenuation of OA was also dependent on the expression of matrix metalloproteinases‑2 and ‑9. The results of the current study indicate that further evaluation of the mechanisms underlying the attenuation of MIA‑induced OA by ETT are required, and may support the development of ETT as a potential therapeutic agent for the treatment of inflammatory diseases such as OA. Topics: Animals; Bone and Bones; Cartilage; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Female; Inflammation; Iodoacetic Acid; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Nitric Oxide Synthase Type II; Osteoarthritis; Pain; Plant Extracts; Rats; RNA, Messenger; Signal Transduction; Tribulus | 2017 |
N‑trans‑ρ‑caffeoyl tyramine isolated from Tribulus terrestris exerts anti‑inflammatory effects in lipopolysaccharide‑stimulated RAW 264.7 cells.
Inflammation is induced by the expression of cyclooxygenase‑2 (COX‑2), which is an important mediator of chronic inflammatory diseases, such as rheumatoid arthritis, asthma and inflammatory bowel disease. Tribulus terrestris (T. terrestris) is known to have a beneficial effect on inflammatory diseases. In this study, we investigated the effects of N‑trans‑ρ‑caffeoyl tyramine (CT) isolated from T. terrestris on the production of nitric oxide (NO), and the expression of pro‑inflammatory cytokines and COX‑2 in lipopolysaccharide (LPS)‑stimulated RAW 264.7 cells. We also aimed to elucidate the molecular mechanisms involved. We found that the ethanolic extract of T. terrestris (EETT) and CT inhibited the production of NO, tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑6 and IL‑10 in the LPS‑stimulated RAW 264.7 cells in a dose‑dependent manner. They were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, CT markedly suppressed the expression of COX‑2 and the production of prostaglandin E2 (PGE2) in response to LPS stimulation. Furthermore, CT markedly decreased p‑c‑Jun N‑terminal kinase (p‑JNK) protein expression in LPS‑stimulated RAW 264.7 cells. COX-2 and p-JNK were measured by western blot analysis. Taken together, these findings indicate that CT isolated from T. terrestris is a novel and potent modulator of inflammatory responses. Thus, it may prove benefiical to further evaluate CT as a possible treatment for chronic inflammatory diseases. Topics: Animals; Cell Line; Cytokines; Inflammation; Lipopolysaccharides; MAP Kinase Kinase 4; Mice; Nitric Oxide; Tribulus; Tyramine | 2015 |
Standardized Aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: role of oxidative stress and inflammatory mediators.
The present study aimed to evaluate standardized aqueous Tribulus terristris (nerunjil) extract on the pain threshold response in streptozotocin (STZ)-induced diabetic neuropathic pain model in rats. After a single injection of STZ (40 mg/kg; i.p.), Wistar male rats were tested by the thermal and chemical-induced pain models. Diabetic rats exhibited significant hyperalgesia, and these rats were left untreated for the first four weeks. Thereafter, treatment was initiated and continued up to week-8. All the rats except the vehicle-treated group received insulin 5 IU/kg/day to maintain plasma glucose levels. Treatment with nerunjil (100 and 300 mg/kg; p.o.) for 4 weeks significantly attenuated the nociception in behavioural models. Nerunjil also inhibited the tumour necrosis factor-α and interleukin-1 beta levels. The effect of nerunjil (300 mg/kg) is comparable to the standard drug Pregabalin (100 mg/kg). Nerunjil increased the superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and decreased the lipid peroxide levels in dose-dependent manner. Insulin alone-treated rats failed to attenuate hyperalgesic response. In comparison to insulin alone-treated rats, nerunjil exhibited significant increase in the pain threshold response. It could be concluded that in controlled diabetic states, nerunjil attenuated the neuropathic pain through modulation of oxidative stress and inflammatory cytokine release. Topics: Animals; Catalase; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Fruit; Glutathione; Glutathione Peroxidase; Hyperalgesia; Inflammation; Insulin; Interleukin-1beta; Lipid Peroxidation; Male; Medicine, Ayurvedic; Neuralgia; Oxidative Stress; Pain Threshold; Plant Extracts; Rats; Rats, Wistar; Streptozocin; Superoxide Dismutase; Tribulus; Tumor Necrosis Factor-alpha | 2013 |