tretinoin has been researched along with Memory-Disorders* in 11 studies
11 other study(ies) available for tretinoin and Memory-Disorders
Article | Year |
---|---|
Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats.
Dietary micronutrients constitute a major environmental factor influencing aging processes. Vitamin A (vit. A) is the precursor of retinoic acid, a bioactive molecule that controls the expression of several genes involved in brain function. Evidence suggests a reduction of vit. A bioavailability with aging, but its impact on neuronal network is poorly understood. We investigated the mechanisms linking memory impairments with specific alterations of retinoic acid metabolism in the hippocampus. We compared young (10 weeks) and aged (16 months) rats, supplemented or not with dietary vit. A (20 IU retinol/g) for 4 weeks. Our study reveals that aging induced dysregulation of gene expression involved in vit. A and retinoic acid metabolism in the liver. Furthermore, vit. A supplementation restored the integrity of the hippocampal neuronal morphology altered by aging. Importantly, we found a high correlation between hippocampal levels of retinoic acid and memory performance. The present work establishes the link between collapse of retinoid metabolism and age-related cognitive decline, highlighting the role of vit. A in maintaining memory through aging. Topics: Aging; Animals; Gene Expression; Hippocampus; Memory; Memory Disorders; Rats, Wistar; Tretinoin | 2020 |
The change in retinoic acid receptor signaling induced by prenatal marginal vitamin A deficiency and its effects on learning and memory.
This study investigated the prenatal marginal vitamin A deficiency (mVAD)-related impairment in learning and memory and the interactions between RARα, Src and NR1. Learning and memory were assessed in adult rats that were exposed to prenatal mVAD with Morris water maze. The average escape time was longer in mVAD rats, and they passed the hidden platform fewer times during the memory retention test than normal vitamin A intake (VAN) rats. The mRNA and protein levels of RARα, Src and NR1 in mVAD rats were significantly lower than those in VAN rats. RARα and Src, but not NR1, were in the same protein complex. RA treatment-induced increase in RARα, Src and NR1 expressions in mVAD neurons was much lower than that in VAN neurons. Overexpression of RARα gene in VAN neurons induced an increase in RARα, Src and NR1 expressions, while silencing of RARα gene induced a decrease in expressions of RARα and Src, but not that of of NR1. In mVAD neurons, however, overexpression of RARα did not induce an increase in NR1 expression, while silencing of RARα gene had no effect on Src and NR1 expressions. Furthermore, inhibition of Src was associated with a decrease in NR1 expression but not that of RARα. Prenatal mVAD was associated with impaired learning and memory in adult rats. It is possible that mVAD-related decrease in RARα led to a decrease in Src expression, which in turn down-regulated NR1 expression and Ca Topics: Animals; Animals, Newborn; Cells, Cultured; Female; Gene Expression Regulation, Developmental; HEK293 Cells; Hippocampus; Humans; Learning Disabilities; Male; Maternal Nutritional Physiological Phenomena; Memory Disorders; Nerve Tissue Proteins; Neurons; Pregnancy; Proto-Oncogene Proteins pp60(c-src); Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Retinoic Acid Receptor alpha; RNA Interference; Severity of Illness Index; Tretinoin; Vitamin A; Vitamin A Deficiency | 2017 |
All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats.
We aimed to investigate preventive effects of All-trans retinoic acid (ATRA) on a lipopolysaccharide (LPS)-induced aged neuroinflammation model. We analyzed behavior, systemic nitric oxide (NO) production, cerebral NO synthase (NOS2) and β-amyloid (Aβ) 1-42 expression and tissue integrity in the neuroinflammation model pretreated with ATRA (150μg/ml/rat/day) for 30days. Our results showed that LPS treatment (500μg/kg/day) for 7days disturbed memory, enhanced systemic NO production, NOS2 and Aβ 1-42 cerebral expression and generated an Alzheimer's disease (AD)-like neuronal degeneration. Interestingly, ATRA pretreatment prevented the LPS-induced deleterious effects. ATRA could be a potent preventive approach in AD. Topics: Aging; Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Inflammation; Lipopolysaccharides; Male; Memory Disorders; Neuroprotective Agents; Nitric Oxide Synthase Type II; Peptide Fragments; Rats; Rats, Wistar; Tretinoin | 2016 |
9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice.
The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand. Topics: Amino Acid Sequence; Animals; Chlorocebus aethiops; COS Cells; Humans; Ligands; Memory Disorders; Mice; Molecular Sequence Data; Protein Binding; Retinoid X Receptors; Retinol-Binding Proteins, Cellular; Tretinoin | 2015 |
All-trans retinoic acid rescues memory deficits and neuropathological changes in mouse model of streptozotocin-induced dementia of Alzheimer's type.
Recent studies have revealed that aberrant vitamin A signaling may lead to memory deficits in rodents. Present study investigates the potential of all-trans-retinoic acid (ATRA) an agonist at retinoid acid family of receptors, in cognitive dysfunctions associated with experimental dementia. Streptozotocin (STZ) [3 mg/kg, intracerebroventricularly (i.c.v)] was administered on alternate days (day 1 and day 3) to induce dementia in Swiss albino mice. STZ mice were administered ATRA (10 mg/kg; 20 mg/kg, p.o.) for a total of 19 days following second i.c.v injection of STZ [day 4 to day 22]. Morris water maze (MWM) test was performed on days 19, 20, 21, 22 and 23 to assess learning and memory of the animals. Following MWM test, the animals were sacrificed for biochemical and histopathological studies. Extent of oxidative stress was measured by estimating the levels of brain reduced glutathione (GSH) and thiobarbituric acid reactive species (TBARS). Brain acetylcholinestrase (AChE) activity and serum cholesterol levels were also estimated. The brain level of myeloperoxidase (MPO) was measured as a marker of inflammation. STZ produced a marked decline in MWM performance of the animals, reflecting impairment of learning and memory. STZ treated mice showed marked accentuation of AChE activity, TBARS and MPO levels along with fall in GSH level. Further the stained micrographs of STZ-treated mice indicated pathological changes, severe neutrophilic infiltration and amyloid deposition. ATRA treatment significantly attenuated STZ-induced memory deficits, biochemical and histopathological alterations. The findings demonstrate that the memory restorative ability of ATRA may be attributed to its anti-cholinesterase, anti-oxidative and anti-inflammatory potential. Topics: Alzheimer Disease; Animals; Brain; Dementia; Disease Models, Animal; Female; Glutathione; Male; Maze Learning; Memory Disorders; Mice; Peroxidase; Reactive Oxygen Species; Streptozocin; Thiobarbiturates; Tretinoin | 2013 |
Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats.
A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function. Topics: Animals; Hippocampus; Memory Disorders; Neurogenesis; Rats; Receptor, trkA; Regeneration; Treatment Outcome; Tretinoin; Up-Regulation; Vitamin A Deficiency | 2008 |
Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model.
Recent studies have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to beta-amyloid (Abeta) accumulation and memory deficits in rodents. The aim of the present study was to evaluate the therapeutic effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, a well established AD mouse model. Here we report a robust decrease in brain Abeta deposition and tau phosphorylation in the blinded study of APP/PS1 transgenic mice treated intraperitoneally for 8 weeks with ATRA (20 mg/kg, three times weekly, initiated when the mice were 5 months old). This was accompanied by a significant decrease in the APP phosphorylation and processing. The activity of cyclin-dependent kinase 5, a major kinase involved in both APP and tau phosphorylation, was markedly downregulated by ATRA treatment. The ATRA-treated APP/PS1 mice showed decreased activation of microglia and astrocytes, attenuated neuronal degeneration, and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These results support ATRA as an effective therapeutic agent for the prevention and treatment of AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Antineoplastic Agents; Astrocytes; Behavior, Animal; Cyclin-Dependent Kinase 5; Disease Models, Animal; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Heterogeneous-Nuclear Ribonucleoprotein U; Humans; Male; Maze Learning; Memory Disorders; Mice; Mice, Transgenic; Nerve Tissue Proteins; Presenilin-1; Reaction Time; Tretinoin | 2008 |
Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice.
An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological perspectives questioning the historical consensus on STWM and LTDM system partition. Topics: Aging; Animals; Behavior, Animal; GAP-43 Protein; Hippocampus; Keratolytic Agents; Maze Learning; Memory Disorders; Memory, Short-Term; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; Time Factors; Tretinoin; Vitamin A | 2008 |
The common environmental pollutant dioxin-induced memory deficits by altering estrogen pathways and a major route of retinol transport involving transthyretin.
Many toxic environmental and food agents have been suspected to be potential risk factors in inducing memory disabilities under normal and pathological conditions. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (known as dioxin or TCDD) is a common and prototypical member of a class of noxious environmental and food contaminants called the halogenated aromatic hydrocarbons. Since the role of dioxin in memory processes has not been studied in detail, the present report aims at elucidating the role of this pollutant in the maintenance of cognitive function. We found that TCDD (50miccrog/kg) induced spatial memory deficits in the Morris water maze (MWM) task in female but not male mice. This sex-dependant effect of dioxin seems to be related to the alteration of estrogen pathways, as treatment with 17beta-estradiol-3-benzoate (E; 5microg/day) reversed memory deficits induced by TCDD. We also observed that cognitive impairments produced by dioxin, which is known to interfere with retinoid turnover and metabolism, were abolished by retinoic acid (RA) treatment (150microg/kg). The cognitive effects of E and RA treatments seem to derive from common rather than additive mechanisms since memory deficits produced by TCDD were fully reversed by these compounds when used separately or in combination. Attenuation of dioxin-induced memory deficits in mice lacking transthyretin (TTR) suggests that TCDD may be acting by affecting the major route of retinol transport involving TTR. Taken together, these results suggest that the environmental and food pollutant TCDD can induce memory deficits by altering the estrogen pathways and a main route of TTR-mediated retinol transport. Topics: Animals; Behavior, Animal; Biological Transport; Cognition; Environmental Pollutants; Estradiol; Estrogens; Female; Male; Memory; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Knockout; Polychlorinated Dibenzodioxins; Prealbumin; Sex Factors; Signal Transduction; Tretinoin; Vitamin A | 2008 |
Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling.
Vitamin A and its derivatives, the retinoids, have recently been reported to be implicated in the synaptic plasticity of the hippocampus and in cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)]. We recently showed that a moderate (about 30%) hypoexpression of brain (and hippocampal) retinoid signalling, like that naturally occurring in the aged brain of mice, might be related to a selective relational memory deficit. To further assess this hypothesis, the present study investigated the effects of Vitamin A deprivation of varying duration both on the brain expression of retinoid receptors (RARbeta and RXRbeta/gamma) and two associated target genes [tissue-type transglutaminase (tTG) and neurogranin, (RC3)], and on radial maze discrimination learning using young adult mice as subjects. We observed that irrespective of its duration (i.e. 31 or 39 weeks), Vitamin A deprivation resulted in a significant reduction (25-30%) in the expression of brain RARbeta, RXRbeta/gamma and tTG mRNAs. Conversely, only the 39-week condition was found to induce a significant decrease in brain RC3 mRNAs contents and a selective relational memory impairment. Finally, daily administration of retinoic acid (RA) failed to reverse the 39-week Vitamin A deficiency (VAD)-related cognitive deficit and to fully normalise the associated brain retinoid hyposignalling. In particular, there was no evidence for an up-regulating effect of RA on whole brain (and hippocampal) RC3 mRNAs of the 39-week-depleted mice. The results show that post-natal VAD may induce a selective memory impairment and give further support to the hypothesis that the fine regulation of retinoid-mediated gene expression is important for optimal brain functioning and higher cognition. Topics: Animals; Behavior, Animal; Brain; Brain Chemistry; Calmodulin-Binding Proteins; Choice Behavior; Discrimination Learning; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurogranin; Reaction Time; Receptors, Retinoic Acid; Retinoids; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transglutaminases; Tretinoin; Vitamin A Deficiency | 2003 |
Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling.
Vitamin A and its derivatives, the retinoids, have been implicated recently in the synaptic plasticity of the hippocampus and might therefore play a role in associated cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors]. In a series of experiments, the present study investigated the possible role of age-related downregulation of retinoid-mediated transcription events in the cognitive decline seen in aged mice. We observed that the brain (and hippocampal) levels of retinoid receptors and the expression of specific associated target genes were restored to presenescent (adult) levels in aged mice after acute administration (150 microg/kg, s.c.) of retinoic acid (RA). These effects of RA, however, could be abolished by the coadministration of an RAR antagonist. RA was also demonstrated to alleviate the age-related deficit in the CA1 long-term potentiation efficacy of aged mice in vivo. Moreover, RA was found to alleviate completely the performance deficit of aged mice to the control level in a two-stage spatial discrimination paradigm designed to assess relational memory. This promnesic effect of RA was again susceptible to abolition by RAR antagonist treatment. The parallel molecular, cellular, and behavioral correlates associated with the decrease of retinoid receptor expression and its normalization demonstrated here suggest that the fine regulation of retinoid-mediated gene expression is fundamentally important to optimal brain functioning and higher cognition. Specifically, a naturally occurring dysregulation of retinoid-mediated molecular events might be a potential etiological factor for cognitive deterioration during senescence. Topics: Aging; Animals; Behavior, Animal; Brain; Brain Chemistry; Calmodulin-Binding Proteins; Down-Regulation; Electric Stimulation; Hippocampus; Injections, Subcutaneous; Long-Term Potentiation; Male; Memory; Memory Disorders; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurogranin; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; RNA, Messenger; Signal Transduction; Transcription Factors; Tretinoin | 2001 |