tretinoin has been researched along with Liver-Cirrhosis* in 32 studies
7 review(s) available for tretinoin and Liver-Cirrhosis
Article | Year |
---|---|
Retinoic Acid: A New Old Friend of IL-17A in the Immune Pathogeny of Liver Fibrosis.
Topics: Animals; Homeostasis; Humans; Inflammation; Interleukin-17; Liver Cirrhosis; Tretinoin | 2021 |
The role of cytochrome P4502E1 in the pathogenesis of alcoholic liver disease and carcinogenesis.
Topics: Alcoholic Intoxication; Animals; Carcinogenesis; Cell Line, Tumor; Chlormethiazole; Cytochrome P-450 CYP2E1; Cytochrome P-450 CYP2E1 Inhibitors; Ethanol; Humans; Liver Cirrhosis; Liver Diseases, Alcoholic; Liver Neoplasms; Non-alcoholic Fatty Liver Disease; Tretinoin; Vitamin A | 2020 |
Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings.
Hepatic stellate cells (HSCs), also known as perisinusoidal cells, are pericytes found in the perisinusoidal space of the liver. HSCs are the major cell type involved in liver fibrosis, which is the formation of scar tissue in response to liver damage. When the liver is damaged, stellate cells can shift into an activated state, characterized by proliferation, contractility and chemotaxis. The activated HSCs secrete collagen scar tissue, which can lead to cirrhosis. Recent studies have shown that in vivo activation of HSCs by fibrogenic agents can eventually lead to senescence of these cells, which would contribute to reversal of fibrosis although it may also favor the insurgence of liver cancer. HSCs in their non-active form store huge amounts of retinoic acid derivatives in lipid droplets, which are progressively depleted upon cell activation in injured liver. Retinoic acid is a metabolite of vitamin A (retinol) that mediates the functions of vitamin A, generally required for growth and development. The precise function of retinoic acid and its alterations in HSCs has yet to be elucidated, and nonetheless in various cell types retinoic acid and its receptors (RAR and RXR) are known to act synergistically with peroxisome proliferator-activated receptor gamma (PPAR-gamma) signaling through the activity of transcriptional heterodimers. Here, we review the recent advancements in the understanding of how retinoic acid signaling modulates the fibrogenic potential of HSCs and proposes a synergistic combined action with PPAR-gamma in the reversal of liver fibrosis. Topics: Antineoplastic Agents; Hepatic Stellate Cells; Humans; Keratolytic Agents; Liver Cirrhosis; PPAR gamma; Signal Transduction; Tretinoin | 2017 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Retinoic acids and hepatic stellate cells in liver disease.
Quiescent hepatic stellate cells (HSCs) in healthy liver store 80% of total liver retinols and release them depending on the extracellular retinol status. However, HSCs activated by liver injury lose their retinols and produce a considerable amount of extracellular matrix, subsequently leading to liver fibrosis. Emerging evidence suggests that retinols and their metabolites such as retinoic acids (RAs) contribute to liver regeneration, fibrosis and tumor. However, it is not clear yet why HSCs lose retinol, which enzymes are involved in the retinol metabolism of HSCs and what function of retinol metabolites on HSCs upon liver injury. Recently, our group and collaborators have demonstrated that during activation, HSCs not only lose retinols but also metabolize them into RAs by alcohol dehydrogenases and retinaldehyde dehydrogenases. As transcriptional factors, metabolized RAs induce retinoic acid early inducible-1 and suppressor of cytokine signaling 1 in HSCs, which plays an important role in the interaction between HSCs and natural killer cells. In addition, RAs released from HSCs may induce hepatic cannabinoid receptor 1 expression in alcoholic liver steatosis or regulate immune responses upon liver inflammation. The present review summarizes the role of endogenous metabolized RAs on HSCs themselves and on other liver cells including hepatocytes and immune cells. Moreover, the effects of exogenous retinol and RA treatments on HSCs and liver disease are discussed. Topics: Animals; Carcinoma, Hepatocellular; Extracellular Matrix; Fatty Liver; Hepatic Stellate Cells; Hepatitis; Humans; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Liver Regeneration; Tretinoin; Vitamin A | 2012 |
[Regulation of tissue-associated fibrinolysis by retinoids: mechanism and consequence of retinoid-PA-TGF-beta system].
Topics: Animals; Carrier Proteins; Cytokines; Fibrinolysin; Fibrinolysis; Humans; Liver Cirrhosis; Midkine; Receptors, Retinoic Acid; Thrombosis; Transforming Growth Factor beta; Tretinoin; Urokinase-Type Plasminogen Activator | 1997 |
Fat-storing cells: hyper- and hypovitaminosis A and the relationships with liver fibrosis.
Topics: Acyltransferases; Animals; Carboxylic Ester Hydrolases; Carrier Proteins; Humans; Hypervitaminosis A; Lipid Metabolism; Liver; Liver Cirrhosis; Receptors, Retinoic Acid; Retinol-Binding Proteins; Tretinoin; Vitamin A Deficiency | 1993 |
2 trial(s) available for tretinoin and Liver-Cirrhosis
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
The single-dose pharmacokinetics of alitretinoin and its metabolites are not significantly altered in patients with cirrhosis.
Alitretinoin (9-cis-retinoic acid, Toctino(®) ) has been marketed recently for oral therapy for chronic hyperkeratotic hand eczema. As alitretinoin is highly lipophilic and metabolized mainly in the liver, it is currently considered to be contraindicated in patients with liver disease. However, the pharmacokinetics and metabolism of alitretinoin have not been studied in these patients.. To study the single-dose pharmacokinetics and metabolism of alitretinoin and its metabolites in patients with cirrhosis following oral administration.. Eight patients with cirrhosis and eight matched volunteer healthy controls were given a single 30-mg oral dose of alitretinoin. Blood and urine samples were collected during the following 24-h study period. Samples were analysed for alitretinoin and for known metabolites using reverse-phase high-performance liquid chromatography. The pharmacokinetics were then evaluated using standard noncompartmental models.. No significant differences were found between healthy controls and patients with cirrhosis when analysing the pharmacokinetic parameters of alitretinoin and its metabolites. Thus, the mean half-lives of alitretinoin were 5·3 and 5·6 h (P = 0.733) and the oral clearances were 1·92 and 1·39 L h(-1) kg(-1) (P = 0·243) in the patient group and the healthy control group, respectively.. The metabolism and pharmacokinetics of alitretinoin following oral administration of the recommended dose of 30 mg for the treatment of severe hand eczema were similar in patients with cirrhosis and in healthy controls. If indicated, alitretinoin can be used in these patients with careful and close monitoring. Topics: Administration, Oral; Aged; Alitretinoin; Area Under Curve; Dermatologic Agents; Eczema; Female; Hand Dermatoses; Humans; Liver Cirrhosis; Male; Middle Aged; Tretinoin | 2014 |
24 other study(ies) available for tretinoin and Liver-Cirrhosis
Article | Year |
---|---|
Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression.
To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients.. First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl. A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1.. Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis. Topics: Animals; Aromatase Inhibitors; Connective Tissue Growth Factor; Hepatocytes; Letrozole; Liver; Liver Cirrhosis; Mice; Pharmaceutical Preparations; Retinoic Acid 4-Hydroxylase; Tretinoin | 2023 |
Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells.
Liver fibrosis is one of the most common liver diseases with substantial morbidity and mortality. However, effective therapy for liver fibrosis is still lacking. Considering the key fibrogenic role of activated hepatic stellate cells (aHSCs), here we reported a strategy to deplete aHSCs by inducing apoptosis as well as quiescence. Therefore, we engineered biomimetic all-trans retinoic acid (ATRA) loaded PLGA nanoparticles (NPs). HSC (LX2 cells) membranes, presenting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were coated on the surface of the nanoparticles, while the clinically approved agent ATRA with anti-fibrosis ability was encapsulated in the inner core. The biomimetic coating of TRAIL-expressing HSC membranes does not only provide homologous targeting to HSCs, but also effectively triggers apoptosis of aHSCs. ATRA could induce quiescence of activated fibroblasts. While TM-NPs (i.e. membrane coated NPs without ATRA) and ATRA/NPs (i.e. non-coated NPs loaded with ATRA) only showed the ability to induce apoptosis and decrease the α-SMA expression in aHSCs, respectively, TM-ATRA/NPs induced both apoptosis and quiescence in aHSCs, ultimately leading to improved fibrosis amelioration in both carbon tetrachloride-induced and methionine and choline deficient L-amino acid diet induced liver fibrosis mouse models. We conclude that biomimetic TM-ATRA/NPs may provide a novel strategy for effective antifibrosis therapy. Topics: Animals; Apoptosis; Biomimetics; Disease Models, Animal; Hepatic Stellate Cells; Liver; Liver Cirrhosis; Mice; Nanoparticles; Tretinoin | 2023 |
t(1;22)(p13;q13) Acute Megakaryoblastic Leukemia Complicated by Hepatic Fibrosis: Antifibrosis Therapy?
There is no established effective treatment for patients with t(1;22)(p13;q13) acute megakaryoblastic leukemia (AMKL) and hepatic fibrosis.. Here we report the outcomes of 2 t(1;22)(p13;q13) AMKL patients with hepatic fibrosis. One patient died from liver failure despite the control of leukemia. The other patient was successfully treated with reduced-intensity chemotherapy and antifibrosis therapy with tretinoin and α-tocopheryl acetate, the hepatic fibrosis resolved and leukemia was in remission for 3 years.. Reduced-intensity chemotherapy plus antifibrosis therapy with tretinoin and α-tocopheryl acetate could be a treatment option for these patients with t(1;22)(p13;q13) AMKL and hepatic fibrosis. Topics: alpha-Tocopherol; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Child, Preschool; Chromosomes, Human, Pair 1; Chromosomes, Human, Pair 22; Drug Therapy, Combination; Female; Humans; Infant, Newborn; Keratolytic Agents; Leukemia, Megakaryoblastic, Acute; Liver Cirrhosis; Prognosis; Translocation, Genetic; Tretinoin | 2021 |
Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis.
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, has antifibrogenic properties in vitro and in animal models. Liver vitamin A homeostasis is maintained by cell-specific enzymatic activities including storage in hepatic stellate cells (HSCs), secretion into circulation from hepatocytes, and formation and clearance of atRA. During chronic liver injury, HSC activation is associated with a decrease in liver retinyl esters and retinol concentrations. atRA is synthesized through two enzymatic steps from retinol, but it is unknown if the loss of retinoid stores is associated with changes in atRA formation and which cell types contribute to the metabolic changes. The aim of this study was to determine if the vitamin A metabolic flux is perturbed in acute liver injury, and if changes in atRA concentrations are associated with HSC activation and collagen expression. At basal levels, HSC and Kupffer cells expressed key genes involved in vitamin A metabolism, whereas after acute liver injury, complex changes to the metabolic flux were observed in liver slices. These changes include a reproducible spike in atRA tissue concentrations, decreased retinyl ester and atRA formation rate, and time-dependent changes to the expression of metabolizing enzymes. Kinetic simulations suggested that oxidoreductases are important in determining retinoid metabolic flux after liver injury. These early changes precede HSC activation and upregulation of profibrogenic gene expression, which were inversely correlated with atRA tissue concentrations, suggesting that HSC and Kupffer cells are key cells involved in changes to vitamin A metabolic flux and signaling after liver injury. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Vitamin A is metabolized in the liver for storage as retinyl esters in hepatic stellate cell (HSCs) or to all-trans-retinoic acid (atRA), an active metabolite with antifibrogenic properties. Following chronic liver injury, vitamin A metabolic flux is perturbed, and HSC activation leads to diminished retinoid stores. WHAT QUESTION DID THIS STUDY ADDRESS? Do changes in the expression of vitamin A metabolizing enzymes explain changes in atRA concentrations and the regulation of fibrosis following acute liver injury? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? In healthy liver, both HSC and Kupffer cells may mediate vitamin A homeostasis. Following acute liver injury, complex changes in metabolizing enzyme expression/activity alter the met Topics: Hepatic Stellate Cells; Humans; Kupffer Cells; Liver; Liver Cirrhosis; Liver Failure, Acute; Tissue Culture Techniques; Tretinoin | 2021 |
Identification of hepatic fibrosis inhibitors through morphometry analysis of a hepatic multicellular spheroids model.
A chronic, local inflammatory milieu can cause tissue fibrosis that results in epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndMT), increased abundance of fibroblasts, and further acceleration of fibrosis. In this study, we aimed to identify potential mechanisms and inhibitors of fibrosis using 3D model-based phenotypic screening. We established liver fibrosis models using multicellular tumor spheroids (MCTSs) composed of hepatocellular carcinoma (HCC) and stromal cells such as fibroblasts (WI38), hepatic stellate cells (LX2), and endothelial cells (HUVEC) seeded at constant ratios. Through high-throughput screening of FDA-approved drugs, we identified retinoic acid and forskolin as candidates to attenuate the compactness of MCTSs as well as inhibit the expression of ECM-related proteins. Additionally, retinoic acid and forskolin induced reprogramming of fibroblast and cancer stem cells in the HCC microenvironment. Of interest, retinoic acid and forskolin had anti-fibrosis effects by decreasing expression of α-SMA and F-actin in LX2 cells and HUVEC cells. Moreover, when sorafenib was added along with retinoic acid and forskolin, apoptosis was increased, suggesting that anti-fibrosis drugs may improve tissue penetration to support the efficacy of anti-cancer drugs. Collectively, these findings support the potential utility of morphometric analyses of hepatic multicellular spheroid models in the development of new drugs with novel mechanisms for the treatment of hepatic fibrosis and HCCs. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Colforsin; Drug Synergism; Epithelial-Mesenchymal Transition; Fibroblasts; Hep G2 Cells; Hepatic Stellate Cells; Human Umbilical Vein Endothelial Cells; Humans; Liver Cirrhosis; Liver Neoplasms; Small Molecule Libraries; Sorafenib; Spheroids, Cellular; Tretinoin; Tumor Microenvironment | 2021 |
LncRNA-H19 induces hepatic stellate cell activation via upregulating alcohol dehydrogenase III-mediated retinoic acid signals.
Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by enhanced retinoic acid signals. Although up-regulated retinoic acid signal responds further to maintain HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of lncRNA-H19 in regulation of retinoic acid signals, and to further examine the underlying mechanism in this molecular context. We found that lncRNA-H19 upregulation could enhance retinoic acid signals to induce HSC activation, whereas lncRNA-H19 knockdown completely disturbed retinoic acid signals. Moreover, the activation of retinoic acid signals impaired the lncRNA-H19 knockdown mediated HSC inactivation. Interestingly, we also found that enhanced retinoic acid signals by lncRNA-H19 was associated with a coordinate increase in retinol metabolism during HSC activation. Increased retinol metabolism contributed to obvious lipid droplet consumption. Importantly, we identified that alcohol dehydrogenase III (ADH3) was essential for lncRNA-H19 to enhance retinoic acid signals. The inhibition of ADH3 completely abrogated the lncRNA-H19 mediated retinoic acid signals and HSC activation. Of note, we identified dihydroartemisinin (DHA) as a natural inhibitor for lncRNA-H19. Treatment with DHA significantly decreased the expression of lncRNA-H19, reduced the expression of ADH3, blocked retinoic acid signals, and in turn, inhibited HSC activation. Overall, these results provided novel implications to reveal the molecular mechanism of increased retinoic acid signals during HSC activation, and identify lncRNA-H19/ADH3 pathway as a potential target for the treatment of liver fibrosis. Topics: Aldehyde Oxidoreductases; Animals; Artemisinins; Carbon Tetrachloride; Cell Line; Gene Knockdown Techniques; Hepatic Stellate Cells; Lipid Metabolism; Liver; Liver Cirrhosis; Male; Mice; Mice, Inbred ICR; Receptors, Retinoic Acid; RNA, Long Noncoding; Signal Transduction; Tretinoin; Vitamin A | 2020 |
Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis.
Liver fibrosis is a serious liver disease associated with high morbidity and mortality. The activation of hepatic stellate cells (HSCs) and the overproduction of extracellular matrix proteins are key features during disease progression. In this work, chondroitin sulfate nanomicelles (CSmicelles) were developed as a delivery system targeting HSCs for the treatment of liver fibrosis. CS-deoxycholic acid conjugates (CS-DOCA) were synthesized via amide bond formation. Next, retinoic acid (RA) and doxorubicin (DOX) were encapsulated into CSmicells to afford a DOX+RA-CSmicelles codelivery system. CSmicelles were selectively taken up in activated HSCs and hepatoma (HepG2) cells other than in normal hepatocytes (LO2), the internalization of which was proven to be mediated by CD44 receptors. Interestingly, DOX+RA-CSmicelles preferentially accumulated in the Golgi apparatus, destroyed the Golgi structure, and ultimately downregulated collagen I production. Following tail-vein injection, DOX+RA-CSmicelles were delivered to the cirrhotic liver and showed synergistic antifibrosis effects in the CCl Topics: Animals; Antineoplastic Agents; Chondroitin Sulfates; Deoxycholic Acid; Doxorubicin; Drug Carriers; Drug Delivery Systems; Golgi Apparatus; Hep G2 Cells; Hepatic Stellate Cells; Humans; Liver Cirrhosis; Male; Micelles; Rats; Rats, Wistar; Tretinoin | 2019 |
In focus in HCB.
Topics: Animals; Blood Proteins; Brain; Cartilage; Growth Plate; Humans; Liver Cirrhosis; Membrane Proteins; Microtubules; Neurons; Non-alcoholic Fatty Liver Disease; Peroxisomes; Tretinoin | 2017 |
Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity.
Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride-treated, B cell-deficient µMT mice, showing that B cells are required. The retinoic acid produced by HSCs augmented B-cell survival, plasma cell marker CD138 expression, and immunoglobulin G production. These activities were reversed following addition of the retinoic acid inhibitor LE540. Transcriptional profiling of fibrotic liver B cells revealed increased expression of genes related to activation of nuclear factor κ light chain enhancer of activated B cells, proinflammatory cytokine production, and CD40 signaling, suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expression), constitutive immunoglobulin G production, and secretion of the proinflammatory cytokines tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α. Likewise, targeted deletion of B-cell-intrinsic myeloid differentiation primary response gene 88 signaling, an innate adaptor with involvement in retinoic acid signaling, resulted in reduced infiltration of migratory CD11c(+) dendritic cells and Ly6C(++) monocytes and, hence, reduced liver pathology.. Liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B-cell activity. These findings highlight B cells as important "first responders" of the intrahepatic immune environment. Topics: Animals; B-Lymphocytes; Cell Differentiation; Gene Expression Profiling; Hepatic Stellate Cells; Liver Cirrhosis; Male; Mice, Inbred C57BL; Mice, Knockout; Myeloid Differentiation Factor 88; Tretinoin | 2015 |
Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.
Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. Topics: Albumins; Animals; Cell Survival; Cells, Cultured; Hepatic Stellate Cells; Histocytochemistry; Humans; Immunohistochemistry; Liver; Liver Cirrhosis; Male; Mice, Inbred BALB C; Microscopy; Rats, Sprague-Dawley; Recombinant Fusion Proteins; Retinol-Binding Proteins; Signal Transduction; Tretinoin | 2015 |
A case report of acute myeloid leukemia after liver transplantation.
Acute myeloid leukemia (AML) is a rare complication observed after liver transplantation and only a handful of cases have been reported until now. We report a case of acute promyelocytic leukemia (APL) after liver transplantation in a 50-year-old man. The case presentation was postodontectomy bleeding with an associative abnormal coagulation test 85 months after liver transplantation. A routine blood test, bone marrow test, chromosome analysis and examination of PML/RARα chimeric gene confirmed the diagnosis of APL and disseminated intravascular coagulation (DIC). Induction chemotherapy with all-trans retinoic acid, arsenic trioxide and daunorubicin was given to this patient and complete remission was achieved. The patient was subjected to DA (daunorubicin combined with cytarabine) and MA (mitoxantrone combined with cytarabine) regimens after remission induction to consolidate the chemotherapy for two courses of treatment, and subsequently subjected to arsenous acid chemotherapy on a periodic basis. Twenty-two months into the follow-up, sustained bone marrow remission was observed with the adapted treatment regimen. Topics: Antineoplastic Combined Chemotherapy Protocols; Arsenic Trioxide; Arsenicals; Bone Marrow; Cytarabine; Daunorubicin; Hepatitis B; Humans; Leukemia, Myeloid, Acute; Liver Cirrhosis; Liver Transplantation; Male; Middle Aged; Mitoxantrone; Oxides; Tretinoin | 2013 |
Acyclic retinoid targets platelet-derived growth factor signaling in the prevention of hepatic fibrosis and hepatocellular carcinoma development.
Hepatocellular carcinoma (HCC) often develops in association with liver cirrhosis, and its high recurrence rate leads to poor patient prognosis. Although recent evidence suggests that peretinoin, a member of the acyclic retinoid family, may be an effective chemopreventive drug for HCC, published data about its effects on hepatic mesenchymal cells, such as stellate cells and endothelial cells, remain limited. Using a mouse model in which platelet-derived growth factor (PDGF)-C is overexpressed (Pdgf-c Tg), resulting in hepatic fibrosis, steatosis, and eventually, HCC development, we show that peretinoin significantly represses the development of hepatic fibrosis and tumors. Peretinoin inhibited the signaling pathways of fibrogenesis, angiogenesis, and Wnt/β-catenin in Pdgf-c transgenic mice. In vitro, peretinoin repressed the expression of PDGF receptors α/β in primary mouse hepatic stellate cells (HSC), hepatoma cells, fibroblasts, and endothelial cells. Peretinoin also inhibited PDGF-C-activated transformation of HSCs into myofibroblasts. Together, our findings show that PDGF signaling is a target of peretinoin in preventing the development of hepatic fibrosis and HCC. Topics: Animals; beta Catenin; Cell Line, Tumor; Gene Expression Profiling; Gene Expression Regulation; Humans; Liver; Liver Cirrhosis; Liver Neoplasms, Experimental; Lymphokines; Male; Mice; Mice, Transgenic; Neovascularization, Pathologic; Platelet-Derived Growth Factor; Receptors, Platelet-Derived Growth Factor; Signal Transduction; Tretinoin; Wnt Proteins | 2012 |
p38-MAPK- and caspase-3-mediated superoxide-induced apoptosis of rat hepatic stellate cells: reversal by retinoic acid.
Reactive oxygen species (ROS) activate retinoid-containing quiescent hepatic stellate cells (qHSCs) to retinoid-deficient fibrogenic myofibroblast-like cells (aHSCs). However, ROS also cause apoptosis of aHSCs, and apoptotic aHSCs are observed in inflammatory fibrotic liver. Here, we investigated mechanisms of the effects of oxidative stress on the survival of qHSCs and aHSCs. HSCs from normal rat liver were used after overnight culture (qHSCs), or in 3-5 passages (aHSCs). For in vivo induction of oxidative stress, tert-butylhydroperoxide was injected into control and CCl4-induced cirrhotic rats. Spontaneous caspase-3 activation and apoptosis, observed in cultured qHSCs, decreased with time and were unaffected by superoxide. In contrast, superoxide caused caspase-3 and p38-MAPK activation, reduction in Bcl-xL expression, and apoptosis in aHSCs. Inhibition of caspase-3 and p38-MAPK did not affect the viability of qHSCs in the absence or presence of superoxide, but inhibited superoxide-induced death of aHSCs. Glutathione (GSH) level and activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were lower in aHSCs than qHSCs. Superoxide increased GSH content, and activities of SOD, catalase and GPx in qHSCs but not in aHSCs. Incubation of 13-cis-retinoic acid (RA)-treated aHSCs with superoxide increased their GSH content significantly, and prevented superoxide-induced p38-MAPK and caspase-3 activation while dramatically reducing the extent of apoptosis. Finally, oxidative stress induced in vivo caused apoptosis of aHSCs in cirrhotic but not of qHSCs in control rats. These results suggest that the absence of retinoids render aHSCs susceptible to superoxide-induced apoptosis via caspase-3 and p38-MAPK activation. Topics: Animals; Apoptosis; Caspase 3; Catalase; Enzyme Activation; Glutathione; Glutathione Peroxidase; Hepatocytes; Liver Cirrhosis; Male; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Rats; Reactive Oxygen Species; Resting Phase, Cell Cycle; Signal Transduction; Superoxide Dismutase; Superoxides; Tretinoin | 2009 |
Successful treatment by all-trans retinoic acid in a patient with acute promyelocytic leukemia complicated by liver cirrhosis and polycystic kidney.
Although all-trans retinoic acid (ATRA) is widely used in acute promyelocytic leukemia (APL), there is little data as to whether or not ATRA is useful for patients with liver and renal failure. A 63-year-old APL patient, complicated by Child-Pugh class A liver cirrhosis and chronic renal failure (creatinine 3.2 mg/dL), was successfully treated with 45 mg/m(2)/day of ATRA. With three courses of chemotherapy, complete remission has been maintained for four years in this patient. Serum trough and maximum ATRA concentration, and the area under the curve (AUC) were not elevated. These observations suggest that full-dose ATRA therapy might be safely applicable to such a complicated case with APL. Topics: Antineoplastic Agents; Humans; Hypercalcemia; Kidney Failure, Chronic; Leukemia, Promyelocytic, Acute; Liver Cirrhosis; Liver Failure; Male; Middle Aged; Polycystic Kidney Diseases; Remission Induction; Tretinoin | 2009 |
Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity.
Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus. Topics: Animals; Base Sequence; Cell Nucleus; Collagen; Collagen Type I; Cyclohexanes; Cytosol; Gene Expression; Humans; Liver Cirrhosis; Mice; Mice, Inbred BALB C; Molecular Sequence Data; Pentanoic Acids; Phosphorylation; Promoter Regions, Genetic; Reactive Oxygen Species; Smad Proteins; Sp1 Transcription Factor; Transforming Growth Factor beta; Tretinoin | 2008 |
Effect of all-trans retinoic acid on liver fibrosis induced by common bile duct ligation in rats.
The aim of this study was to investigate the effect and possible mechanism of all-trans retinoic acid (ATRA) on liver fibrosis induced by common bile duct ligation (CBDL) in rats. Fifty-three female Wistar rats were randomly divided into 5 groups: sham operation group (group J, 5 animals) and groups A, B, C and D (12 animals in each group). The rats in groups A, B, C and D were subjected to CBDL to induce liver fibrosis, while those in group J to sham operation. From the 3rd week the rats in groups B, C and D respectively received daily administration of ATRA via gastric tube at three different doses [0.1, 1.5 and 7.5 mg/kg body weight (BW)]. Animals were sacrificed at 6th week. Rats' liver tissues were observed for pathologic changes under a light microscope. The protein levels of type I collagen (COL I), matrix metalloproteinase-2 (MMP2), MMP13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) in liver tissues were determined by immunohistochemical techniques. The expression levels of TGF-beta1 and CTGF mRNA in liver tissues were detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed that loss of normal hepatic architecture and formation of obvious fibrosis were observed in group A, while ATRA treatment for 4 weeks notably alleviated the pathological changes of hepatocytes. The expression of COL I and TIMP-1 proteins in group A was increased, while decreased in ATRA-treated CBDL groups (P<0.05). ATRA (1.5 and 7.5 mg/kg BW) reduced the expression levels of COL I protein more greatly than that of 0.1 mg/kg BW (P<0.05). ATRA treatment increased the protein levels of MMP2 and MMP13. The expression levels of TGF-beta1 and CTGF mRNA in group A were increased. In comparison with group A, the mRNA levels of TGF-beta1 and CTGF in ATRA-treated CBDL groups were significantly decreased (P<0.05). It was concluded that ATRA could inhibit CBDL-induced liver fibrosis in rats by suppressing the expression of TGF-beta1 and CTGF so as to diminish the inhibition of TIMP-1 on MMP2 and MMP13 and increase the activity of MMP2 and MMP13. Topics: Animals; Common Bile Duct; Connective Tissue Growth Factor; Female; Ligation; Liver Cirrhosis; Matrix Metalloproteinase 13; Matrix Metalloproteinase 2; Random Allocation; Rats; Rats, Wistar; RNA, Messenger; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1; Tretinoin | 2008 |
Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1.
Hepatic stellate cells (HSCs) store 75% of the body's supply of vitamin A (retinol) and play a key role in liver fibrogenesis. During liver injury, HSCs become activated and susceptible to natural killer (NK) cell killing due to increased expression of the NK cell activating ligand retinoic acid early inducible gene 1 (RAE-1). To study the mechanism by which RAE-1 is upregulated in HSCs during activation, an in vitro model of cultured mouse HSCs was employed. RAE-1 was detected at low levels in quiescent HSCs but upregulated in 4- and 7-day cultured HSCs (early activated HSCs), whereas 21-day cultured HSCs (fully activated HSCs) lost RAE-1 expression. High levels of RAE-1 in 4- and 7-day cultured HSCs correlated with their susceptibility to NK cell killing, which was diminished by treatment with RAE-1 neutralizing antibody. Furthermore, retinoic acid (RA) and retinal dehydrogenase (Raldh) levels were upregulated in early activated HSCs compared with quiescent or fully activated HSCs. Blocking RA synthesis by the Raldh inhibitor or blocking RA signaling by the retinoic acid receptor antagonist abolished upregulation of RAE-1 whereas treatment with RA induced RAE-1 expression in HSCs. In conclusion, during activation, HSCs lose retinol, which is either secreted out or oxidized into RA; the latter stimulates RAE-1 expression and sensitizes early activated HSCs to NK cell killing. In contrast, fully activated HSCs become resistant to NK cell killing because of lack of RAE1 expression, leading to chronic liver fibrosis and disease. Topics: Aldehyde Oxidoreductases; Animals; Cells, Cultured; Killer Cells, Natural; Liver; Liver Cirrhosis; Mice; Nuclear Matrix-Associated Proteins; Nucleocytoplasmic Transport Proteins; Protein Isoforms; Signal Transduction; Tretinoin; Up-Regulation | 2007 |
Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids.
Activation of hepatic stellate cells (HSC) is a central event in the pathogenesis of liver fibrosis during chronic liver injury. We examined the expression of retinoic acid (RAR) and retinoid X receptors (RXR) during HSC activation and evaluated the influence of natural and synthetic retinoic acids (RA) on the phenotype of culture-activated HSC. The expression of the major RAR/RXR subtypes and isoforms was analyzed by Northern hybridization. Presence of functional receptor proteins was established by gel shift analysis. Retinoic acids, RAR, and RXR selective agonists and an RAR antagonist were used to evaluate the effects of retinoid signalling on matrix synthesis by Northern blotting and immunoprecipitation, and on cell proliferation by BrdU incorporation. The 9-cisRA and synthetic RXR agonists reduced HSC proliferation and synthesis of collagen I and fibronectin. All-trans RA and RAR agonists both reduced the synthesis of collagen I, collagen III, and fibronectin, but showed a different effect on cell proliferation. Synthetic RAR agonists did not affect HSC proliferation, indicating that ATRA inhibits cell growth independent of its interaction with RARs. In contrast, RAR specific antagonists enhance HSC proliferation and demonstrate that RARs control proliferation in a negative way. In conclusion, natural RAs and synthetic RAR or RXR specific ligands exert differential effects on activated HSC. Our observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or to animals subjected to fibrogenic stimuli. Topics: Alitretinoin; Amino Acid Sequence; Animals; Antineoplastic Agents; Base Sequence; Benzoates; Cell Division; Dimerization; Extracellular Matrix Proteins; Fatty Acids, Unsaturated; Gene Expression; Liver; Liver Cirrhosis; Male; Molecular Sequence Data; Phenotype; Rats; Rats, Wistar; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; RNA, Messenger; Tetrahydronaphthalenes; Transcription Factors; Tretinoin | 2004 |
Nutritional pharmacotherapy of chronic liver disease: from support of liver failure to prevention of liver cancer.
Many patients with liver cirrhosis are in a state of protein and energy malnutrition and require careful nutritional support. Our research has revealed that approximately 30% of the patients have protein-energy malnutrition, 40% protein malnutrition, and 10% energy malnutrition; 20% are in a normal nutritional state. Supplementation with branched-chain amino acids alleviates chronic liver failure, improves the protein nutritional state, and subsequently prolongs survival. In contrast, therapeutic modalities for energy malnutrition have not yet been fully elucidated and await further studies. Improved survival of the cirrhotic patients essentially brings a higher incidence of hepatocellular carcinoma (HCC). A synthetic analogue of vitamin A (acyclic retinoid or 4,5-dehydrogeranyl geranoic acid) prevents at least the development of second primary tumors after curative treatment of preceding HCC. The mechanism of this cancer chemo-prevention is clonal deletion of premalignant and latent malignant cells by the retinoid. We describe our clinical experiences with these two nutritional pharmacotherapies of chronic liver diseases and review their basic mechanisms. Topics: Amino Acids, Branched-Chain; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Transformation, Neoplastic; Combined Modality Therapy; Humans; Liver Cirrhosis; Liver Failure; Liver Neoplasms; Nutritional Support; Protein-Energy Malnutrition; Randomized Controlled Trials as Topic; Survival Rate; Treatment Outcome; Tretinoin | 2000 |
The plasminogen-activating system in hepatic stellate cells.
Urokinase plasminogen activator (uPA) generates plasmin, a process inhibited by plasminogen-activator inhibitor (PAI)-1 and localized to the cell surface by binding of uPA to a specific receptor. Plasmin degrades extracellular matrix (ECM) both directly and by activation of matrix metalloproteinases (MMPs). Because stellate cells play a central role in the pathogenesis of liver fibrosis both via production of ECM proteins and through secretion of MMPs, their contribution to plasmin generation was assessed. Stellate cells were prepared from rat liver and cultured on plastic. Northern analysis showed cellular expression of messenger RNA (mRNA) for PAI-1, uPA, and uPA receptor. Zymography/reverse zymography identified cell-surface-associated uPA activity and uPA and PAI-1 in culture media. Net uPA activity in culture media was maximal after 7 days in culture and then declined, whereas PAI-1 antigen levels remained consistently elevated between 7 and 21 days in culture. Stellate cell-mediated plasmin generation was also seen in in vitro cultures supplemented with plasminogen. Because hepatic stellate cells (HSCs) contain retinoids and release them on activation, the effect of retinoic acid on the plasminogen-activating system was also assessed. Treatment of cultured HSCs with retinoic acid (1 micromol/L) increased uPA secretion 2.6-fold but did not alter PAI-1. We conclude that stellate cells synthesize key components of the plasminogen-activating system and generate plasmin and therefore have the ability to regulate MMP activation. Upregulation of uPA synthesis by retinoic acid may have implications in matrix remodeling in sites of stellate cell activation in which high concentrations of retinoids may be achieved. Topics: Adipocytes; Animals; Culture Media, Conditioned; Liver; Liver Cirrhosis; Male; Plasminogen; Plasminogen Activator Inhibitor 1; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Receptors, Urokinase Plasminogen Activator; RNA, Messenger; Tretinoin; Urokinase-Type Plasminogen Activator | 1996 |
Application of poly(A)+RNA patterns method for searching of differentially expressed genes.
Poly(A)+RNA composition differences for normal, fetal and cirrhotic human liver before and after retinoic acid-induced differentiation of the F9 embryonal carcinoma cell line were analyzed by a novel poly(A)+RNA patterns method. The method is based on the polyacrylamide gel electrophoretic analysis of short cDNA termination products, synthesized by reverse transcriptase using poly(A)+RNA as a template, a set of short 5'-end labeled primers, three natural and one terminator deoxyribonucleotide. A number of known differentially expressed genes and some unknown ones were then identified by direct sequencing of the differentially represented bands excised from a gel and searching a complementary mRNA target sites in Genbank database. Topics: Base Sequence; Cell Differentiation; Databases, Factual; Fetus; Gene Expression; Humans; Liver; Liver Cirrhosis; Molecular Sequence Data; Poly A; RNA; RNA, Messenger; Sequence Analysis, RNA; Tretinoin; Tumor Cells, Cultured | 1993 |
Retinoic acid suppresses the response to platelet-derived growth factor in human hepatic Ito-cell-like myofibroblasts: a post-receptor mechanism independent of raf/fos/jun/egr activation.
Activated Ito-cell-like myofibroblasts proliferate in vivo during human liver injury and subsequent fibrogenesis. To examine the associated regulatory mechanisms, human liver myofibroblasts were characterized after culture purification from mixed liver-cell isolates obtained from perfused normal human livers. The cells resembled rat Ito-cell-derived myofibroblasts expressing desmin and alpha-smooth-muscle actin filaments as well as the interstitial collagens type I and III. [3H]Thymidine incorporation was inducible with platelet-derived growth factor (PDGF) and was suppressible with retinoic acid (RAc) in a concentration-dependent fashion. RAc suppression did not alter PDGF alpha- or beta-receptor abundance or activation. In addition, RAc functioned via a pathway distal or independent of cytoplasmic raf activation (i.e. phosphorylation, kinase function and perinuclear translocation) and nuclear fos, jun and egr expression, as these steps were similarly unaffected by RAc treatment. Since normal Ito cells contain abundant amounts of vitamin A which is lost during activation, these data suggest that retinoids could contribute to the maintenance of the quiescent non-proliferative state by suppressing mitogenesis at a post-cytokine receptor step distal from or independent of fos/jun/egr [e.g. via changes in activator protein-1 (AP-1) binding]. Topics: Cell Division; Cell Nucleus; Humans; In Vitro Techniques; Liver; Liver Cirrhosis; Nuclear Proteins; Platelet-Derived Growth Factor; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-fos; Proto-Oncogene Proteins c-jun; Proto-Oncogene Proteins c-raf; Receptors, Platelet-Derived Growth Factor; Tretinoin | 1993 |
Severe hepatotoxic reaction with progression to cirrhosis after use of a novel retinoid (acitretin).
We report the case of a 50-year-old female who suffered from severe palmar and plantar pustulosis. During treatment with acitretin, a novel oral retinoid, which is the main derivative of etretinate, the patient developed a severe hepatotoxic reaction. Subsequent histological studies strongly suggested the development of liver cirrhosis. Reversible elevation of serum aminotransferase values during treatment with acitretin has been reported. However, the present observation indicates that severe hepatotoxic injury may also follow treatment with this agent. Topics: Acitretin; Female; Humans; Liver; Liver Cirrhosis; Microscopy, Electron; Middle Aged; Skin Diseases; Tretinoin | 1990 |
Pharmacokinetics of etretinate in psoriatic patients with liver fibrosis.
A study of the pharmacokinetics of etretinate in 7 psoriatic patients with liver fibrosis or liver cirrhosis is reported. Maximum plasma concentrations occurred within 1.5-4.0 hr. Absorption lag-times ranged from 0.3-2.5 hr, whereas the apparent absorption first order half-times (t1/2ka) were within the range of 0.3-1.2 hr. As judged from the AUC-values corrected for dose and body weight a six-fold interindividual variation existed with regard to the systemic availability of etretinate. Absorption and disposition rates of etretinate in subjects with hepatic fibrosis increasing to cirrhosis were not significantly altered compared with previous results in psoriatic patients with normal liver function. Topics: Acitretin; Aged; Etretinate; Female; Half-Life; Humans; Liver; Liver Cirrhosis; Male; Middle Aged; Psoriasis; Tretinoin | 1989 |