tretinoin and Ganglioneuroblastoma

tretinoin has been researched along with Ganglioneuroblastoma* in 3 studies

Other Studies

3 other study(ies) available for tretinoin and Ganglioneuroblastoma

ArticleYear
The calcium-sensing receptor and parathyroid hormone-related protein are expressed in differentiated, favorable neuroblastic tumors.
    Cancer, 2009, Jun-15, Volume: 115, Issue:12

    Differentiated histopathology is a favorable prognostic factor in neuroblastic tumors, and molecular pathways underlying neuroblastoma differentiation can be modulated pharmacologically. The calcium-sensing receptor (CaR) and parathyroid hormone-related protein (PTHrP) regulate differentiation processes in some cellular contexts. CaR is up-regulated when neural stem cells are specified to the oligodendrocyte lineage and regulates PTHrP production in astrocytes. The objective of the current study was to assess whether CaR and PTHrP participate in neuroblastoma differentiation pathways.. CaR and PTHrP messenger RNA (mRNA) and protein expression were analyzed in neuroblastic tumors, and correlation with prognostic factors was assessed. CaR and PTHrP expression levels were analyzed in neuroblastoma cell lines treated with all-trans-retinoic acid or 5-bromo-2'-deoxyuridine (BrdU).. CaR expression was correlated with favorable histology, age at diagnosis <1 year, low clinical stage, and low clinical risk. CaR was absent in undifferentiated neuroblasts and was expressed in differentiating neuroblasts. CaR and PTHrP were highly expressed in ganglion and in Schwann-like cells. PTHrP mRNA levels were higher in ganglioneuroblastomas and ganglioneuromas than in neuroblastomas (P < .0001). Both genes were up-regulated in neuroblastomas with treatment-induced maturation features. CaR, but not PTHrP, was up-regulated at early phases of in vitro neuronal differentiation induction. Substrate-adherent, non-neuronal cell lines displayed the highest PTHrP levels among the neuroblastoma cell lines examined. The up-regulation of PTHrP and of 2 glial differentiation markers was observed in 2 cell lines that were treated with BrdU, whereas CaR was induced in only 1 cell line.. CaR and PTHrP were expressed in differentiated, favorable neuroblastic tumors, and both genes were up-regulated by inducing differentiation.

    Topics: Bromodeoxyuridine; Cell Differentiation; Cell Line, Tumor; Cell Lineage; Ganglioneuroblastoma; Ganglioneuroma; Humans; Neuroblastoma; Neuroglia; Neurons; Parathyroid Hormone-Related Protein; Receptors, Calcium-Sensing; RNA, Messenger; Schwann Cells; Tretinoin; Up-Regulation

2009
Expression of the HMGI(Y) gene products in human neuroblastic tumours correlates with differentiation status.
    British journal of cancer, 2000, Volume: 83, Issue:11

    HMGI and HMGY are splicing variants of the HMGI(Y) gene and together with HMGI-C, belong to a family of DNA binding proteins involved in maintaining active chromatin conformation and in the regulation of gene transcription. The expression of the HMGI(Y) gene is maximal during embryonic development, declines in adult differentiated tissues and is reactivated in most transformed cells in vitro and in many human cancers in vivo. The HMGI(Y) genomic locus is frequently rearranged in mesenchymal tumours, suggesting a biological role for HMGI(Y) gene products in tumour biology. HMGIs are both target and modulators of retinoic acid activity. In fact, HMGI(Y) gene expression is differentially regulated by retinoic acid in retinoid-sensitive and -resistant neuroblastoma cells, while HMGI-C participates in conferring retinoic acid resistance in some neuroblastoma cells. In this paper we show that HMGI and HMGY isoforms are equally regulated by retinoic acid in neuroblastoma cell lines at both RNA and protein levels. More importantly our immunohistochemical analysis shows that, although HMGI(Y) is expressed in all neuroblastic tumours, consistently higher levels are observed in less differentiated neuroblastomas compared to more differentiated ganglioneuromas, indicating that HMGI(Y) expression should be evaluated as a potential diagnostic and prognostic marker in neuroblastic tumours.

    Topics: Antineoplastic Agents; Blotting, Western; Cell Differentiation; Child, Preschool; Female; Ganglioneuroblastoma; Ganglioneuroma; Gene Expression Regulation, Neoplastic; High Mobility Group Proteins; HMGA1a Protein; Humans; Immunohistochemistry; Infant; Male; Neoplasm Proteins; Neuroblastoma; Protein Isoforms; Reverse Transcriptase Polymerase Chain Reaction; Transcription Factors; Tretinoin; Tumor Cells, Cultured

2000
Retinoic acid alters the mechanism of attachment of malignant astrocytoma and neuroblastoma cells to thrombospondin-1.
    Experimental cell research, 1999, May-25, Volume: 249, Issue:1

    Based on the hypothesis that the attachment of neuroectodermal cells to thrombospondin-1 (TSP-1) may affect tumor spread and play a role in the anti-tumor effects of retinoic acid, we investigated the expression of TSP-1 in these cells in situ and the effect of retinoic acid on the morphology of TSP-1-adherent neuroblastoma (SK-N-SH) and malignant astrocytoma (U-251MG) cells in vitro. TSP-1-adherent SK-N-SH cells demonstrated process outgrowth, with further neuronal differentiation after retinoic acid treatment, consistent with the in situ studies showing that TSP-1 expression occurs in a differentiation-specific manner in neuroblastic tumors. TSP-1-adherent U-251MG cells failed to spread; however, after retinoic acid treatment the cells demonstrated broad lamellipodia containing radial actin fibers and organization of integrins alpha3beta1 and alpha5beta1 in clusters in lamellipodia and filopodia. The attachment of both SK-N-SH and U-251MG cells to TSP-1 was found to be mediated by heparan sulfate proteoglycans, integrins, and the CLESH-1 adhesion domain first identified in CD36. Heparin and heparitinase treatment inhibited TSP-1 attachment. Integrins alpha3beta1 and alpha5beta1 mediated TSP-1 attachment of SK-N-SH cells, and integrins alpha3beta1, alpha5beta1, and alphavbeta3 mediated TSP-1 attachment of U-251MG cells. Attachment was dependent on the RGD sequence which is located in the carboxy-terminus of TSP-1. Treatment with a pharmacologic dosage of retinoic acid altered the TSP-1 cell adhesion mechanism in both cell lines in that neither heparin nor micromolar concentrations of the RGD peptide inhibited attachment; after treatment, attachment was inhibited by the CSVTCG peptide located in the type I repeat domain of TSP-1 and a recombinant adhesion domain (CLESH-1) from CD36. Expression of CD36 was found in the retinoic acid-treated U-251MG cells. These data indicate that neuroectodermally derived cells utilize several mechanisms to attach to TSP-1, and these are differentially modulated by treatment with retinoic acid. These data also suggest that the CSVTCG sequence of TSP-1 modulates or directs cytoskeletal organization in neuroblastoma and astrocytoma cells.

    Topics: Astrocytes; Astrocytoma; Brain; CD36 Antigens; Cell Adhesion; Cell Differentiation; Chondroitin ABC Lyase; Chondroitin Sulfates; Cytoskeleton; Endothelium; Ganglioneuroblastoma; Ganglioneuroma; Glioblastoma; Heparin; Humans; Integrin alpha3beta1; Integrins; Neuroblastoma; Neurons; Oligopeptides; Peptide Fragments; Polysaccharide-Lyases; Receptors, Fibronectin; Recombinant Proteins; Thrombospondin 1; Tretinoin; Tumor Cells, Cultured

1999