tretinoin has been researched along with Amyotrophic-Lateral-Sclerosis* in 4 studies
4 other study(ies) available for tretinoin and Amyotrophic-Lateral-Sclerosis
Article | Year |
---|---|
All-Trans Retinoic Acid Exerts Neuroprotective Effects in Amyotrophic Lateral Sclerosis-Like Tg (SOD1*G93A)1Gur Mice.
All-trans retinoic acid (ATRA), a ligand of retinoic acid receptors, could regulate various biological processes by activating retinoic acid signals. Recent studies suggested that ATRA displays multiple neuroprotective effects and thereby alleviates the disease progression in a variety of neurological diseases. Our previous studies found that the impaired retinoic acid signal decreased ALDH1A2, an essential synthetase of ATRA, in the spinal cord of ALS mice. Here, we evaluated the neuroprotective and neurorestorative effects of ATRA in a SOD1-G93A transgenic mice model of ALS. We administrated ATRA(3 mg/kg) daily from the onset stage to the progression stage for 5 weeks. Behavioral tests showed that ATRA improved the forelimb grip strength in ALS mice and may slow the disease progression, but not the body weight. ATRA could completely reverse the impaired retinoic acid receptor alpha (RARα) signal in the spinal cord of ALS mice. This effect was accompanied by enhancing the degradation of misfolded proteins via the ubiquitin-proteasome system, regulating the oxidative stress, inhibiting the astrocyte activation, and promoting the neurotrophic signal recovery. Our findings are the first to indicate that the damaged retinoic acid signal is involved in the pathogenesis of ALS, and ATRA could induce the functional neuroprotection via repairing the damaged retinoic acid signal. Topics: Amyotrophic Lateral Sclerosis; Animals; Astrocytes; Disease Models, Animal; Disease Progression; Mice; Mice, Transgenic; Motor Neurons; Neuroprotective Agents; Superoxide Dismutase; Tretinoin | 2020 |
Long-term dietary administration of valproic acid does not affect, while retinoic acid decreases, the lifespan of G93A mice, a model for amyotrophic lateral sclerosis.
Mice bearing the mutated gene for Cu/Zn superoxide dismutase (G93A) are a good model for human amyotrophic lateral sclerosis (ALS). They develop progressive limb paralysis paralleled by loss of motor neurons of the cervical and lumbar spinal cord, which starts at 3-3.5 months of age and ends with death at 4-5 months. Several treatments have been attempted to delay clinical symptoms and to extend lifespan, and some have had modest beneficial effects. One such treatment, based on long-term administration of valproic acid (VPA), resulted in controversial results. We report here that, while dietary supplementation with high VPA dosage slows down motor neuron death, as assessed by measurement of a specific marker for cholinergic neurons in the spinal cord, it has no significant effect on lifespan. Recently, the hypothesis has been put forward that a deficiency of retinoic acid (RA) and its signaling may have a role in ALS. We report that long-term dietary supplementation with RA has no effect on the decrease of the cholinergic marker in the spinal cord, but it significantly shortens lifespan of G93A mice. Topics: Acetylcholinesterase; Amyotrophic Lateral Sclerosis; Animal Feed; Animals; Antineoplastic Agents; Choline O-Acetyltransferase; Disease Models, Animal; Female; GABA Agents; Gene Dosage; Humans; Life Expectancy; Male; Mice; Mice, Transgenic; Nerve Degeneration; Superoxide Dismutase; Superoxide Dismutase-1; Tretinoin; Valproic Acid | 2009 |
A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis.
Mutations in human angiogenin (hANG), an angiogenic member of the RNase A superfamily, have been recently reported in patients with amyotrophic lateral sclerosis (ALS), a progressive late-onset neurodegenerative disorder. However, very little is known about the expression and subcellular distribution of ANG in the nervous system or its role in differentiation. Here we report that mouse angiogenin-1 (mAng-1) is strongly expressed in the developing nervous system during mouse embryogenesis and neuroectodermal differentiation of pluripotent P19 embryonal carcinoma cells. mAng1 is strongly expressed in motor neurons (MNs) in the spinal cord and dorsal root ganglia as well as in post-mitotic MNs derived from P19 cells. We also show for the first time that ANG expression is in the growth cones and neurites. NCI 65828, an inhibitor of the ribonucleolytic activity of hANG, affected pathfinding by P19-derived neurons but not neuronal differentiation. Our findings clearly show that ANG plays an important role in neurite pathfinding and this has implications for ALS. Topics: Amyotrophic Lateral Sclerosis; Animals; Carcinoma, Embryonal; Cell Differentiation; Embryo, Mammalian; Female; Fluorescent Antibody Technique; Male; Mice; Mice, Inbred C57BL; Naphthalenesulfonates; Neurites; Ribonuclease, Pancreatic; Tretinoin; Tumor Cells, Cultured | 2007 |
Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis.
Accumulating evidences indicate that ceramide is closely involved in apoptotic cell death in neurodegenerative disorders and aging. We examined ceramide levels in the cerebrospinal fluid (CSF) or brain tissues from patients with neurodegenerative disorders and the mechanism of how intra- and extracellular ceramide was regulated during neuronal apoptosis. We screened the ceramide levels in the CSF of patients with neurodegenerative disorders, and found that ceramide was significantly increased in patients with Alzheimer's disease (AD) than in patients with age-matched amyotrophic lateral sclerosis (ALS) and other neurological controls. With immunohistochemistry in AD brains, ceramide was aberrantly expressed in astroglia in the frontal cortices, but not detected in ALS and control brains. To explore for the regulation of ceramide in astroglia in Alzheimer's disease brains, we examined the metabolism of ceramide during neuronal apoptosis. In retinoic acid (RA)-induced neuronal apoptosis, RA slightly increased de novo synthesis of ceramide, but interestingly, RA dramatically inhibited conversion of [14C] ceramide to glucosylceramide (GlcCer), suggesting that the increase of ceramide mass is mainly due to inhibition of the ceramide-metabolizing enzyme GlcCer synthase. In addition, a significant increase of the [14C] ceramide level in the culture medium was detected by chasing and turnover experiments without alteration of extracellular [14C] sphingomyelin levels. A 2.5-fold increase of ceramide mass in the supernatant was also detected after 48 h of treatment with RA. These results suggest a regulatory mechanism of intracellular ceramide through inhibition of GlcCer synthase and a possible role of ceramide as an extracellular/intercellular mediator for neuronal apoptosis. The increased ceramide level in the CSF from AD patients, which may be derived from astroglia, raises a possibility of neuronal apoptosis by the response to intercellular ceramide in AD. Topics: Aged; Alzheimer Disease; Amyotrophic Lateral Sclerosis; Animals; Apoptosis; Astrocytes; Cell Line, Tumor; Cells, Cultured; Ceramides; Extracellular Space; Glucosyltransferases; Humans; Immunohistochemistry; Indicators and Reagents; Lipid Metabolism; Mice; Neurons; Serine; Solvents; Transferases (Other Substituted Phosphate Groups); Tretinoin | 2005 |