transforming-growth-factor-beta has been researched along with Wallerian-Degeneration* in 3 studies
3 other study(ies) available for transforming-growth-factor-beta and Wallerian-Degeneration
Article | Year |
---|---|
Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages.
The mechanisms that control the phagocytic activities of microglia and macrophages during disorders of the nervous system are largely unknown. In the present investigation, we assessed the functional role of transforming growth factor (TGF)beta2 in vitro and studied TGFbeta-2mRNA and protein expression in two CNS lesion paradigms in vivo characterized by fundamental differences in microglia/macrophage behaviour: optic nerve crush exhibiting slow, and focal cerebral ischemia exhibiting rapid phagocytic transformation. Furthermore, we used sciatic nerve crush injury as a PNS lesion paradigm comparable to brain ischemia in its rapid phagocyte response. In normal and degenerating optic nerves, astrocytes strongly and continuously expressed TGF-beta2 immunoreactivity. In contrast, TGF-beta2 was downregulated in Schwann cells of degenerating sciatic nerves, and was not expressed by reactive astrocytes in the vicinity of focal ischemic brain lesions during the acute phagocytic phase. In line with its differential lesion-associated expression pattern, exogenous TGF-beta2 suppressed spontaneous myelin phagocytosis by microglia/macrophages in a mouse ex vivo assay of CNS and PNS Wallerian degeneration. In conclusion, we have identified TGF-beta2 as a nervous system intrinsic cytokine that could account for the differential regulation of phagocytic activities of microglia and macrophages during injury. Topics: Animals; Brain; Brain Infarction; Cells, Cultured; Down-Regulation; Female; Immunohistochemistry; Macrophages; Male; Mice; Microglia; Nerve Crush; Nervous System; Optic Nerve Injuries; Phagocytosis; Rats; Reverse Transcriptase Polymerase Chain Reaction; Sciatic Nerve; Transforming Growth Factor beta; Transforming Growth Factor beta2; Wallerian Degeneration | 2004 |
Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo.
Transforming growth factor-beta (TGF-beta) plays a central role in the regulation of Schwann cell (SC) proliferation and differentiation and is essential for the neurotrophic effects of several neurotrophic factors (reviewed by Unsicker and Krieglstein, 2000; Unsicker and Strelau, 2000). However, its role in peripheral nerve regeneration in vivo is not yet understood. Our studies were carried out to characterize (1) the effects of duration of regeneration, and chronic SC denervation on the number of tibial (TIB) motor neurons that regenerated axons over a fixed distance (25 mm into distal common peroneal [CP] nerve stumps), and (2) the effect of in vitro incubation of 6-month chronically denervated sciatic nerve explants with TGF-beta and forskolin on their capacity to support axonal regeneration in vivo. TIB--CP cross-suture in Silastic tubing was used, and regeneration into 0-24-week chronically denervated CP stumps was allowed for either 1.5 or 3 months. Chronically denervated rat sciatic nerve explants (3 x 3 mm(2)) were incubated in vitro with either DMEM and 15% fetal calf serum (D-15) plus TGF-beta/forskolin or D-15 alone for 48 h and placed into a 10-mm Silastic tube that bridged the proximal and distal nerve stumps of a freshly cut TIB nerve. The number of tibial motor neurons that regenerated axons through the explants and 25 mm into the distal nerve stump after 6 months, and TIB regeneration into the CP nerve stumps, were assessed using retrograde tracers, fluorogold, or fluororuby. We found that all tibial motor neurons regenerate their axons 25 mm into 0-4-week denervated CP nerve stumps after a regeneration period of 3 months. Reducing regeneration time to 1.5 months and chronic denervation, reduced the number of motor neurons that regenerated axons over 25 mm. Exposure of 6-month denervated nerve explants to TGF-beta/forskolin increased the number of motor neurons that regenerated through them from 258 +/-13; mean +/- SE to 442 +/- 22. Hence, acute treatment of atrophic SC with TGF-beta can reactivate the growth-permissive SC phenotype to support axonal regeneration. Topics: Animals; Axons; Colforsin; Denervation; Disease Models, Animal; Female; Motor Neurons; Nerve Regeneration; Neurosurgical Procedures; Organ Culture Techniques; Peripheral Nerve Injuries; Peripheral Nerves; Prostheses and Implants; Rats; Rats, Sprague-Dawley; Recovery of Function; Schwann Cells; Time Factors; Tissue Transplantation; Transforming Growth Factor beta; Treatment Outcome; Wallerian Degeneration | 2002 |
Axons modulate the expression of transforming growth factor-betas in Schwann cells.
We have investigated the expression of transforming growth factor (TGF)-beta 1,-beta 2, and -beta 3 in developing, degenerating, and regenerating rat peripheral nerve by immunohistochemistry and Northern blot analysis. In normal adult sciatic nerve, TGF-beta 1, -beta 2, and -beta 3 are detected in the cytoplasm of Schwann cells, and the levels of TGF-beta 1 and -beta 3 mRNAs are constant during post-natal development. When sciatic nerves are transected to cause axonal degeneration and prevent axonal regeneration, the level of TGF-beta 1 mRNA in the distal nerve-stump increases markedly and remains elevated, whereas the level of TGF-beta 3 mRNA falls modestly and remains depressed. When sciatic nerves are crushed to cause axonal degeneration and allow axonal regeneration, the level of TGF-beta 1 mRNA initially increases as axons degenerate, and then falls as axons regenerate. TGF-beta 2 mRNA was not detected in developing or lesioned sciatic nerves at any time. Cultured Schwann cells have high levels of TGF-beta 1 mRNA, the amount of which is reduced by forskolin, which mimics the effect of axonal contact. These data demonstrate that Schwann cells express TGF-beta 1, -beta 2, and -beta 3, and that TGF-beta 1 and -beta 3 mRNA predominate over TGF-beta 2 mRNA in peripheral nerve. Axonal contact and forskolin decrease the expression of TGF-beta 1 in Schwann cells. Topics: Animals; Animals, Newborn; Axons; Blotting, Northern; Colforsin; Immunohistochemistry; Nerve Crush; Nerve Regeneration; Rats; Rats, Sprague-Dawley; Receptors, Nerve Growth Factor; RNA, Messenger; Schwann Cells; Sciatic Nerve; Transforming Growth Factor beta; Wallerian Degeneration | 1993 |